跳到主要內容區塊

Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS)
| 發布日期:2018-03-29 | 維護日期: 發布單位:

Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS)

Chung-Chia Liao a, Shu-Chun Chen b, Hui-Pei Huang b,c,d,*,1,Chau-Jong Wang b,c,**,1

a Division of Endocrinology and Metabolism, Department of Internal Medicine, Cheng-Ching Hospital, Taichung, Taiwan

b Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan

c Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan

d Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan

Bladder cancer is known as the world's ninth most prevalent cancer in 2012. New cytotoxic drugs have created considerable progress in the treatment. Gallic acid (GA) has been shown to inhibit carcinogenesis in animal models and various cancer cell lines. The aim of the present study was to evaluate the effect of GA on proliferation and migration inhibition of a bladder cancer cell line. The results showed that GA inhibited fatty acid synthase (FAS) activity and increased ER alpha level of TSGH-8301 bladder cancer cell. GA regulated the cell proliferation via the PI3K/AKT and MAPK/ERK pathway. Immunoprecipitation assay demonstrated that GA decreased Skp2 protein level and attenuated Skp2-p27 association. It was suggested that GA acted upstream of the proteasome to control p27 levels and ultimately inhibited G2/M phase transition. Further, transwell chambers assay showed that GA suppressed bladder cancer cell invasion and migration through p-AKT/MMP-2 signaling pathway. The finding indicated that GA inhibited TSGH-8301 bladder cancer cell growth, invasion and migration through inhibition of fatty acid synthase

Keywords: Gallic acid, Bladder cancer, Fatty acid synthase (FAS), Proliferation, Migration

檔案下載