Journal of Food and Drug Analysis (JFDA)
【Update Date:2020-12-14】unit:
Carbon quantum dots for the detection of antibiotics and pesticides
Han-Wei Chu a, Binesh Unnikrishnan a, Anisha Anand a, Yang-Wei Lin b, hih-Ching Huang a,c,d,*
a Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan
b Department of Chemistry, National Changhua University of Education, Changhua City, 50007, Taiwan
c Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan
d School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
Carbon quantum dots (CQDs) are novel nanomaterials with interesting physical and chemical properties, which are intensely studied only in the last decade. Unique properties, such as its inherent fluorescent property, high resistance to photobleaching, high surface area, ease of synthesis, flexible choice of precursor, and surface tunability enable CQDs for promising application in biosensing. Therefore, it is highly useful in clinical, forensic, medical, food and drug analyses, disease diagnosis, and various other fields of biosensing. In addition, their fluorescence properties are tunable by the interaction with certain molecules via different mechanisms, which enables their application for sensing of those molecules, such as pesticides and antibiotics. The detection of antibiotics and pesticides is especially important as they are commonly used in both the medical and agricultural fields and can affect both humans and their environment. However, these molecules do not have a specific recognition element unlike for antibodies, proteins, enzymes, and other biomarkers. Thus, the fluorescence quenching mechanism alone cannot be applied as a sensing mechanism for the CQDs-based sensing of pesticides and antibiotics. In this review, we discuss the application of various CQDs, in the detection of antibiotics, pesticides (herbicide, fungicide, insecticide), and other medicinal drugs through various detection strategies and their current limitations.
Keywords: Carbon quantum dots, Fluorescence, Sensors, Agricultural chemicals, Medicinal drugs, Environment
https://doi.org/10.38212/2224-6614.1269
(https://www.jfda-online.com/journal/vol28/iss4/5/)