Method of Test for Veterinary Drug Residues in Foods - Test of Bacitracin

1. Scope

This method is applicable to the determination of bacitracin in eggs.

2. Method

After extraction and purification, bacitracin is determined by liquid chromatography/tandem mass spectrometry (LC-MS/MS).

2.1. Equipment

- 2.1.1. Liquid chromatograph/tandem mass spectrometer
 - 2.1.1.1. Ion source: electrospray ionization, ESI.
 - 2.1.1.2. Column: SHIMADZU Shim-pack GIST C18, 2 μm, 2.1 mm i.d. × 10 cm, or an equivalent product.
- 2.1.2. Solid phase extraction vacuum manifolds.
- 2.1.3. Nitrogen evaporator.
- 2.1.4. Centrifuge: centrifugal force ≥ 10000 ×g, temperature control ≤ 0°C.
- 2.1.5. Ultrasonicator.
- 2.1.6. Vortex mixer.

2.2. Chemicals

Methanol, HPLC grade;

Acetonitrile, HPLC grade;

n-Hexane, HPLC grade;

Formic acid, reagent grade;

Deionized water, resistivity ≥ 18 MΩ•cm (at 25°C);

Bacitracin A, reference standard.

2.3. Apparatus

- 2.3.1. Volumetric flask: 1 mL and 10 mL.
- 2.3.2. Centrifuge tube: 15 mL and 50 mL, PP.
- 2.3.3. Membrane filter: 0.22 µm, PVDF
- 2.3.4. Solid phase extraction cartridge: Waters Oasis HLB, 500 mg, 6 mL, or an equivalent product.

2.4. Reagents

2.4.1. 0.1% formic acid

Dilute 1 mL of formic acid with deionized water to 1000 mL.

2.4.2. 0.1% formic acid: acetonitrile (4:1, v/v)

Mix 0.1% formic acid solution and acetonitrile at the ratio of 4:1 (v/v).

2.4.3. Extraction solution

Mix 0.1% formic acid and methanol at the ratio of 5:2 (v/v). Prepare freshly before use.

2.5. Mobile phase

2.5.1. Solvent A

Dilute 2 mL of formic acid with deionized water to 1000 mL, and filter with a membrane filter.

2.5.2. Solvent B

Dilute 2 mL of formic acid with acetonitrile to 1000 mL, and filter with a membrane filter.

2.6. Standard solution preparation

Transfer about 10 mg of bacitracin A reference standard accurately weighed to a 10-mL volumetric flask, dissolve and dilute with 0.1% formic acid to volume as the standard stock solution. Store under refrigeration in the dark. When to use, dilute appropriate volume of the standard stock solution with 0.1% formic acid: acetonitrile (4:1, v/v) to 1000 ng/mL as the standard solution.

2.7. Sample solution preparation

2.7.1. Extraction

Remove eggs' shells, and transfer about 2.5 g of the mixed egg white and yolk sample accurately weighed into a 50-mL centrifuge tube. Add 25 mL of the extraction solution, sonicate for 10 min, centrifuge at 10000 ×g for 10 min at 0°C, and collect the supernatant. Add 10 mL of *n*-hexane to the residue, and vortex-mix for 1 min. Centrifuge at 10000 ×g for 10 min at 0°C, and collect the lower layer for purification.

2.7.2. Purification

Transfer the solution for purification from section 2.7.1 into the solid phase extraction cartridge prerinsed with 5 mL of methanol and 5 mL of deionized water, and discard the eluent. Wash the cartridge with 10 mL of deionized water, and discard the eluent. Add 5 mL of methanol to the cartridge, and collect the eluent. Evaporate the eluent to dryness by gently flushing with a stream of nitrogen at 40°C in a water bath. Dissolve and dilute the residue with 0.1% formic acid: acetonitrile (4:1, v/v) to 1 mL. Filter with a membrane filter, and take the filtrate as the sample solution.

2.8. Calibration standard curve preparation

Take a blank sample, add 25-150 µL of the standard, and follow the procedure

described in section 2.7 to obtain the calibration standard solutions. Establish the calibration standard curve of bacitracin A by the peak areas of bacitracin A vs. the added concentrations in the range of 25-150 ng/mL.

LC-MS/MS operating conditions^(note1):

Column: SHIMADZU Shim-pack GIST C18, 2 µm, 2.1 mm i.d. × 10 cm.

Column temperature: 40°C.

Mobile phase: a gradient program of solvent A and solvent B is as follows:

Time (min)	A (%)	B (%)
$0.0 \rightarrow 3.0$	95 → 0	5 → 100
$3.0 \rightarrow 5.0$	$0 \rightarrow 0$	100 → 100
$5.0 \rightarrow 6.0$	0 → 95	100 → 5
6.0 → 8.0	95 → 95	5 → 5

Flow rate: 0.4 mL/min. Injection volume: 5 µL. Interface voltage: 1 kV.

Ionization mode: ESI+.

Interface temperature: 295°C.

Nebulizing gas flow: 3.0 L/min.

Heating gas low: 15.0 L/min.

Desolvation line temperature: 185°C.

Heat block temperature: 300°C.

Drying gas flow: 5.0 L/min.

Detection mode: multiple reaction monitoring (MRM). Detection ion pair,

Q1/Q3 Pre Bias and collision voltage are as follows:

	Ion pair	Q1/Q3	Collision
Analyte	Precursor ion (<i>m/z</i>) > product ion (<i>m/z</i>)	Pre Bias (V)	energy (eV)
Bacitracin A	475 > 199*	30/20	26
	475 > 669.8	30/24	15

^{*}The quantitative ion.

Note 1: All the parameters can be adjusted depending on the instruments used if the above conditions are not applicable.

2.9. Identification and quantification

Accurately inject 5 μ L of the sample solution and the calibration standard solutions into LC-MS/MS separately. Operate according to the conditions in section 2.8. Identify bacitracin A based on the retention time and the relative ion intensities^(note2). Calculate the amount of bacitracin in the sample by the following formula^(note3):

The amount of bacitracin in the sample (ppm) = $\frac{C \times V}{M \times 1000}$

C: the concentration of bacitracin A in the sample solution calculated by the calibration standard curve (ng/mL)

V: the final make-up volume of the sample (mL)

M: the weight of the sample (g)

Note 2: Relative ion intensities are calculated by peak areas of qualitative ions divided by peak areas of quantitative ions (≤ 100%). Maximum permitted tolerances of relative ion intensities are as follows:

Relative ion intensity (%)	Tolerance (%)
> 50	± 20
> 20-50	± 25
> 10-20	± 30
≤ 10	± 50

Note 3: The amount of bacitracin in the sample is expressed as bacitracin A.

Remark

- 1. Limit of quantification (LOQ) for bacitracin is 0.01 ppm.
- 2. Further validation should be performed when interfering compounds appear in samples.

Reference

- 1. Lin, W. X., Sun, X. Q., Tian, M., Yu, L., Chen, X. and Li, Z. 2009. Determination of colistin, bacitracin and virginiamycin multiresidues in animal tissue by liquid chromatography tandem mass spectrometry. J. Instrum. Anal. 28: 212 215.
- 2. Tao, Y., Xie, S., Zhu, Y., Chen, D., Pan, Y., Wang, X., Liu, Z., Huang, L., Peng, D. and Yuan, Z. 2018. Analysis of major components of bacitracin, colistin and virginiamycin in feed using matrix solid-phase dispersion extraction by liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr. Sci. 56: 285 291.

Reference chromatogram

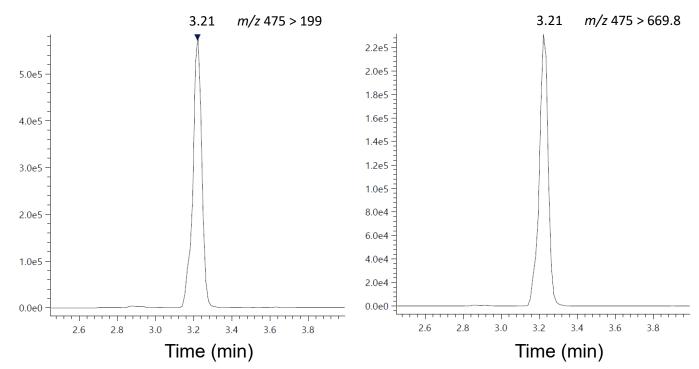


Figure. MRM chromatograms of bacitracin A standard analyzed by LC-MS/MS.