Method of Test for Synthetic Cannabinoids in Urine (2)

1. Scope

This method is applicable to the determination of 34 synthetic cannabinoids (AB-001 etc. listed as the attached table) in urine.

2. Method

After dilution, analytes are determined by liquid chromatography/tandem mass spectrometry (LC-MS/MS).

2.1. Equipment

- **2.1.1.** Liquid chromatograph/tandem mass spectrometer
 - **2.1.1.1.** Ion source: electrospray ionization, ESI.
 - **2.1.1.2.** Column: Sunshell[®] RP-AQUA, 2.6 μm, 2.1 mm i.d. × 10 cm, or an equivalent product.
- 2.1.2. Vortex mixer
- 2.2. Chemicals

Methanol, HPLC grade;

Acetonitrile, HPLC grade;

Formic acid, reagent grade;

Artificial urine (UTAK 88121-CDF(L)) or an equivalent product;

Deionized water, resistivity \geq 18 M $\Omega \cdot$ cm (at 25°C);

AB-001 and other 33 synthetic cannabinoids listed in the attached table, reference standards.

AB-CHMINACA-d₄ and 12 other internal standards listed in the attached table.

- 2.3. Apparatus
 - 2.3.1. Volumetric flask: 1 mL and 10 mL.
 - **2.3.2.** Membrane filter: 0.22 µm, PVDF.
- 2.4. Reagent solution preparation
 - 2.4.1. 50% Methanol

Mix methanol and deionized water at the ratio of 1:1 (v/v).

2.4.2. 50% Acetonitrile in Methanol

Mix acetonitrile and methanol at the ratio of 1:1 (v/v).

- 2.5. Mobile phase
 - **2.5.1.** Solvent A

Dilute 1 mL of formic acid with deionized water to 1000 mL, mix well and filter with a membrane filter.

2.5.2. Solvent B

Dilute 1 mL of formic acid with 50% acetonitrile in methanol to 1000 mL, mix well and filter with a membrane filter.

2.6. Internal standard solution preparation

Transfer 1 mg of the 13 internal standards accurately weighed into each 10-mL volumetric flask, dissolve and dilute with methanol to volume as the internal standard stock solutions. Store at -20°C in the dark. Upon use, mix appropriate volume of the internal standard stock solutions, and dilute with 50% methanol to 1 μ g/mL as the internal standard solution.

2.7. Standard solution preparation

Transfer 1 mg of the 34 reference standards accurately weighed into each 10-mL volumetric flask, dissolve and dilute with methanol to volume as the standard stock solution. Store at -20 °C in the dark. Upon use, mix appropriate volume of the standard stock solutions, and dilute with 50% methanol to 500 ng/mL as the standard solution.

2.8. Sample solution preparation

Transfer 100 μ L of the homogenized sample and 20 μ L of the internal standard solution into a 1-mL volumetric flask, and dilute to volume with 50% methanol. Filter with a membrane filter, and take the filtrate as the sample solution.

2.9. Calibration curve

Use the artificial urine as the blank sample. Transfer 100 μ L of the artificial urine, 10-200 μ L of the standard solution, and 20 μ L of the internal standard solution to a 1-mL volumetric flask and dilute with 50% methanol to volume. Filter with a membrane filter, and take the filtrates as the calibration standard solutions. Operate LC-MS/MS according to the following conditions. Establish the calibration curve of each synthetic cannabinoid by the ratios of the peak area of each synthetic cannabinoid to that of the respective internal standard vs. the added concentrations (5-100 ng/mL).

LC-MS/MS operating conditions^(note):

Column: SunShell[®] RP-AQUA, 2.6 µm, 2.1 mm i.d. × 10 cm.

- Column temperature: 40°C.
- Injection volume: 3 µL.

|--|

Time (min)	A (%)	B (%)
0.0 ightarrow 0.5	$60 \rightarrow 60$	$40 \rightarrow 40$
0.5 ightarrow 12.0	$60 \rightarrow 10$	$40 \rightarrow 90$
12.0 ightarrow 12.5	$10 \rightarrow 10$	$90 \rightarrow 90$
12.5 ightarrow 12.6	$10 \rightarrow 60$	$90 \rightarrow 40$
12.6 ightarrow 14.5	$60 \rightarrow 60$	$40 \rightarrow 40$

Flow rate: 0.4 mL/min

lon spray voltage:

5.5 kV for ESI⁺ Ionization mode;

4.5 kV for ESI⁻ Ionization mode.

Turbo heater temperature: 550°C.

Nebulizer gas, GS1: 50 psi.

Heated gas, GS2: 60 psi.

Curtain gas: 30 psi.

Collision gas: Medium.

Detection mode: multiple reaction monitoring (MRM). Selected ion pair, declustering potential and collision energy are shown in the attached table.

Note: All the parameters can be adjusted depending on the instruments used if the above conditions are not applicable.

2.10. Identification and quantification

Accurately inject 3 μ L of the sample solution and the calibration standard solutions into LC-MS/MS separately. Operate according to the conditions in section 2.9. Identify each synthetic cannabinoid based on the retention time and the relative ion intensities^(note). Calculate the amount of each synthetic cannabinoid in the sample by the following formula:

The amount of each synthetic cannabinoid in the sample (ng/mL) $C \times V$

Where,

- C: the concentration of each synthetic cannabinoid in the sample solution calculated by the calibration curve (ng/mL)
- V: the final make-up volume of the sample (mL)
- M: the volume of the sample (mL)

Note: Relative ion intensities are calculated by peak areas of quantitative ions divided by peak areas of qualitative ions (≤ 100%). Maximum permitted tolerances of relative ion intensities are as the following:

Relative ion intensity (%)	Tolerance (%)
> 50	± 20
> 20-50	± 25
> 10-20	± 30
≤ 10	± 50

Remark

- 1. Limit of quantification (LOQ) for each synthetic cannabinoid is 50 ng/mL.
- 2. Further validation should be performed when interference compounds appear in the samples.

Reference

Freijo Jr., T. D., Harris, S. E. and Kala, S. V. 2014. A rapid quantitative method for the analysis of synthetic cannabinoids by liquid chromatography–tandem mass spectrometry. J. Anal. Toxicol. 38: 466-478.

Reference chromatograms

Figure. The MRM chromatograms of 34 synthetic cannabinoids and 13 internal standards analyzed by LC-MS/MS.

Figure. The MRM chromatograms of 34 synthetic cannabinoids and 13 internal standards analyzed by LC-MS/MS (Continued).

Figure. The MRM chromatograms of 34 synthetic cannabinoids and 13 internal standards analyzed by LC-MS/MS (Continued).

Figure. The MRM chromatograms of 34 synthetic cannabinoids and 13 internal standards analyzed by LC-MS/MS (Continued).

.

Table. Parameters of selective ions for 34 synthetic cannabinoids and 13 internal standards.

Analyte	lonization mode	Ion pair Precursor ion (<i>m/z</i>) > product ion (<i>m/z</i>)	Declustering potential (V)	Collision energy (eV)	Internal Standard
1-Adamantyl-(1-pentylindol-3- yl)methanone (AB-001)	ESI+	350 > 135* 350 > 77	154 154	39 111	JWH-210-d ₉
<i>N</i> -[(1 <i>S</i>)-1-(Aminocarbonyl)-2- methylpropyl]-1-(cyclohexylmethyl)-1 <i>H</i> - indazole-3-carboxamide (AB-CHMINACA)	ESI+	357 > 241* 357 > 312	59 59	35 23	AB- CHMINACA-d₄
<i>N</i> -[(1 <i>S</i>)-1-(Aminocarbonyl)-2- methylpropyl]-1-[(4-fluorophenyl)methyl]- 1 <i>H</i> -indazole-3-carboxamide (AB-FUBINACA)	ESI+	369 > 253* 369 > 324	83 83	32 21	AB- FUBINACA-d₄
<i>N</i> -[(1 <i>S</i>)-1-(Aminocarbonyl)-2- methylpropyl]-1-pentyl-1 <i>H</i> -indazole-3- carboxamide (AB-PINACA)	ESI+	331 > 215* 331 > 286	40 40	36 20	AB-PINACA-d₃
<i>N</i> -(1-Amino-3,3-dimethyl-1-oxobutan-2- yl)-1-[(4-fluorophenyl)methyl]indazole-3- carboxamide (ADB-FUBINACA)	ESI+	383 > 338* 383 > 253	72 72	21 36	AB- FUBINACA-d₄
<i>N</i> -[[1-[(4-Fluorophenyl)methyl]-1 <i>H</i> - indazol-3-yl]carbonyl]-L-valine, ethyl ester (AEB-FUBINACA)	ESI+	398 > 109* 398 > 253	124 124	59 33	AB- FUBINACA-d₄
<i>N</i> -(1-Adamantyl)-1-pentylindazole-3- carboxamide (AKB48)	ESI+	366 > 135* 366 > 93	76 76	26 66	AKB48-d ₉
[1-(5-Fluoropentyl)indol-3-yl]-naphthalen- 1-ylmethanone (AM-2201)	ESI⁺	360 > 155* 360 > 127	117 117	37 70	AM-2201-d₅
N-(1-Adamantyl)-1-(5- bromopentyl)indazole-3-carboxamide (5-Bromo-AKB48)	ESI+	444 > 135* 444 > 79	36 36	30 96	AKB48-d∍
<i>N</i> -(1-Adamantyl)-1-(5- chloropentyl)indazole-3-carboxamide (5-Chloro-AKB48)	ESI+	400 > 135* 400 > 93	39 39	26 71	AKB48-d9
(1-(5-Chloropentyl)-1 <i>H</i> -indol-3-yl)(2,2,3,3- tetramethylcyclopropyl)methanone (5-Chloro-UR-144)	ESI+	346 > 248* 346 > 144	100 100	37 51	UR-144-d₅

Quantitative ion

Table. Parameters of selective ions for 34 synthetic cannabinoids and 13 internal standards (Continued).

Analyte	lonization mode	lon pair	Declustering	Collision	n Internal Standard
		Precursor ion (<i>m/z</i>)	potential	energy	
		> product ion (<i>m/z</i>)	(V)	(eV)	
<i>rel</i> -5-(1,1-Dimethylheptyl)-2-[(1 <i>R</i> ,3 <i>S</i>)-3-	ESI-	317 > 159*	140	71	CP47,497-
hydroxycyclohexyl]-phenol (CP47,497)		317 > 245	140	45	d ₁₁
Methyl (2 <i>S</i>)-2-[[1-(4-fluorobutyl)indazole-		264 > 210*	60	22	
3-carbonyl]amino]-3,3-dimethylbutanoate	ESI⁺	304 > 219	60	33 22	
(4F-MDMB-BINACA)		504 > 504	00	22	
Methyl 2-[[1-(5-fluoropentyl)indazole-3-		270 \ 222*	07	22	
carbonyl]amino]-3,3-dimethylbutanoate	ESI+	370 > 233	97	33 02	AM-2201-d₅
(5F-ADB)		3/8 > 318	97	23	
N-(1-Adamantyl)-1-(5-fluoropentyl)-1 <i>H</i> -	EQI+	384 > 135*	72	26	
Indazole-3-Carboxamide (5F-AKB48)	ESI	384 > 93	72	68	AKB48-09
Methyl (2 <i>S</i>)-2-[[1-(5-fluoropentyl)indazole-		264 > 204*	400	22	40
3-carbonyl]amino]-3-methylbutanoate	ESI⁺	364 > 304"	108	22	AB-
(5F-AMP)		364 > 233	108	31	FUBINACA-d4
Methyl (2 <i>S</i>)-2-[[1-(5-fluoropentyl)indole-3-	ESI+	077 - 000*	00	20	
carbonyl]amino]-3,3-dimethylbutanoate		377 > 232	89	32	XLR-11-d₅
(5F-MDMB-PICA)		377 > 144	89	48	
Quinolin-8-yl 1-[(4-		007 - 050*	70	0.4	
fluorophenyl)methyl]indole-3-carboxylate	ESI+	397 > 252*	78	24	AM-2201-d₅
(FUB-PB-22)		397 > 109	78	49	
Naphthalen-1-yl-(1-pentylindol-3-	EQI+	342 > 155*	110	32	
yl)methanone (JWH-018)	ESI	342 > 127	110	72	JVVH-018-09
(1-Hexylindol-3-yl)-naphthalen-1-		356 > 127*	78	33	
ylmethanone (JWH-019)	E9I⁺	356 > 155	78	64	JVVH-210-09
Naphthalen-1-yl-(1-pent-4-enylindol-3-	ESI⁺	340 > 155*	142	32	
yl)methanone (JWH-022)		340 > 127	142	60	JVVH-250-05
(1-Butylindol-3-yl)-naphthalen-1-	ESI+	328 > 155*	151	32	
ylmethanone (JWH-073)		328 > 127	151	65	JVVH-073-d7
(4-Methoxynaphthalen-1-yl)-(1-		372 > 185*	102	35	
pentylindol-3-yl)methanone (JWH-081)	E91,	372 > 114	102	103	JVVH-U81-05
(4-Methylnaphthalen-1-yl)-(1-pentylindol-		356 > 169*	57	34	
3-yl)methanone (JWH-122)	E01	356 > 115	57	86	JVVH-21U-09

*Quantitative ion

Table. Parameters of selective ions for 34 synthetic cannabinoids and 13 internal standards (Continued).

	Ionization	lon pair	Declustering	Collision	Internal
Analyte	mode	Precursor ion (<i>m/z</i>)	potential	energy	Standard
		> product ion (<i>m/z</i>)	(V)	(eV)	_
2-(2-Chlorophenyl)-1-(1-pentylindol-3-	ESI+	340 > 125*	136	36	JWH-018-d ₉
yl)ethenone (JWH-203)		340 > 214	136	35	
(4-Ethylnaphthalen-1-yl)-(1-pentylindol-3-	ESI+	370 > 183*	138	33	
yl)methanone (JWH-210)	LOI	370 > 214	138	34	JVVH-210-d9
2-(2-Methoxyphenyl)-1-(1-pentylindol-3-	ESI+	336 > 121*	129	27	
yl)ethanone (JWH-250)	LOI	336 > 91	129	65	JVIN-250-05
Methyl (2 <i>S</i>)-2-[[1-					
(cyclohexylmethyl)indole-3-	ESI+	385 > 240*	80	25	
carbonyl]amino]-3,3-dimethylbutanoate	LOI	385 > 144	80	55	ALK-11-05
(MDMB-CHMICA)					
Methyl (2 <i>S</i>)-2-[[1-					
(cyclohexylmethyl)indole-3-		371 > 240*	32	23	AB-
carbonyl]amino]-3-methylbutanoate	ESI	371 > 144	32	50	CHMINACA-d ₄
(MMB-CHMICA)					
Methyl 2-[[1-[(4-					
fluorophenyl)methyl]indazole-3-	ESI+	384 > 253*	106	32	AB-
carbonyl]amino]-3-methylbutanoate	LOI	384 > 109	106	66	FUBINACA-d4
(MMB-FUBINACA)					
Naphthalen-1-yl 1-(5-fluoropentyl)indole-	ESI+	376 > 232*	55	27	
3-carboxylate (NM-2201)	LOP	376 > 144	55	52	JVVH-210-09
[1-(5-Fluoropentyl)indazol-3-yl]-		361 > 233*	126	24	
naphthalen-1-ylmethanone (THJ-2201)	ESI	361 > 145	126	48	JVVH-210-09
(1-Pentylindol-3-yl)-(2,2,3,3-		242 > 405*	50	20	
tetramethylcyclopropyl)methanone	ESI+	312 > 125"	50	30	UR-144-d₅
(UR-144)		312 > 214	56	31	
[1-(5-Fluoropentyl)indol-3-yl]-(2,2,3,3-			400	20	
tetramethylcyclopropyl)methanone	ESI+	330 > 125*	126	30	XLR-11-d₅
(XLR-11)		330 > 232	126	33	
N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-					
yl]-1-(cyclohexylmethyl)indazole-3-	ESI+	361 > 245	114	35	-
carboxamide-d4 (AB-CHMINACA-d4) (I.S.)					
*•••••					

*Quantitative ion

Table. Parameters of selective ions for 34 synthetic cannabinoids and 13 internal standards (Continued).

Analyte	Ionization mode	lon pair	Declustering potential	Collision energy	Internal Standard
		Precursor ion (<i>m/z</i>)			
		> product ion (<i>m/z</i>)	(V)	(eV)	
N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-					
yl]-1-[(4-fluorophenyl)methyl]indazole-3-	ESI+	373 > 328	68	21	-
carboxamide-d4 (AB-FUBINACA-d4) (I.S.)					
N-[(1S)-1-(Aminocarbonyl)-2-					
methylpropyl]-1-pentyl-1 <i>H</i> -indazole-3-	ESI⁺	340 > 224	40	36	-
carboxamide-d ₉ (AB-PINACA-d ₉) (I.S.)					
N-(1-Adamantyl)-1-pentylindazole-3-	EQI+	075 . 405	60	45	
carboxamide-d9 (AKB48-d9) (I.S.)	ESI	375 > 135	09	15	-
[1-(5-Fluoropentyl)indol-3-yl]-naphthalen-	ESI+	265 > 107	31	73	
1-ylmethanone-d ₅ (AM-2201-d ₅) (I.S.)	ESI	305 > 127	51	75	-
<i>rel</i> -5-(1,1-Dimethylheptyl)-2-[(1 <i>R</i> ,3 <i>S</i>)-3-					
hydroxycyclohexyl]-phenol-d11	ESI-	328 > 256	72	47	-
(CP47,497-d ₁₁) (I.S.)					
Naphthalen-1-yl-(1-pentylindol-3-	EQI+	351 > 155	36	33	-
yl)methanone-d $_{9}$ (JWH-018-d $_{9}$) (I.S.)	ESI				
(1-Butylindol-3-yl)-naphthalen-1-	EQI+		76	22	
ylmethanone-d ₇ (JWH-073-d ₇) (I.S.)	ESI	335 > 155	70	33	-
(4-Methoxynaphthalen-1-yl)-(1-					
pentylindol-3-yl)methanone-d ₉	ESI⁺	381 > 185	51	35	-
(JWH-081-d ₉) (I.S.)					
(4-Ethylnaphthalen-1-yl)-(1-pentylindol-3-	ESI+	379 > 183	36	33	-
yl)methanone-d₀ (JWH-210-d₀) (I.S.)					
2-(2-Methoxyphenyl)-1-(1-pentylindol-3-	EQI+	044 - 404	46	27	
yl)ethanone-d₅ (JWH-250-d₅) (I.S.)	ESI	341 > 121	40	21	-
(1-Pentylindol-3-yl)-(2,2,3,3-					
tetramethylcyclopropyl)methanone-d₅	ESI+	317 > 125	161	31	-
(UR-144-d ₅) (I.S.)					
[1-(5-fluoropentyl)indol-3-yl]-(2,2,3,3-					
tetramethylcyclopropyl)methanone-d₅	ESI+	335 > 125	61	31	-
(XLR-11-d ₅) (I.S.)					
*Ouantitativa ian					

*Quantitative ion