Method of Test for N-Nitroso Salbutamol in Salbutamol Drug Substance

1. Scope

This method is applicable to the determination of *N*-nitroso salbutamol in Salbutamol drug substances.

2. Method

After extraction, *N*-nitroso salbutamol is determined by liquid chromatography/tandem mass spectrometry (LC-MS/MS).

- 2.1. Equipment
 - **2.1.1.** Liquid chromatograph/tandem mass spectrometer
 - **2.1.1.1.** Ion source: electrospray ionization, ESI.
 - **2.1.1.2.** Column: XSelect HSS T3, 3.5 μ m, 3 mm i.d. \times 15 cm, or an equivalent product.
- **2.1.2.** Ultrasonicator.
- **2.1.3.** Centrifuge: centrifugal force ≥ 3000 ×g.
- 2.2. Chemicals

Methanol, HPLC grade;

Acetonitrile, HPLC grade;

Formic acid, HPLC grade;

Deionized water, resistivity \geq 18 M Ω · cm at (25°C);

N-Nitroso salbutamol, reference standard.

- 2.3. Apparatus
 - 2.3.1. Volumetric flask: 10 mL, amber flask.
 - 2.3.2. Centrifuge tube: 15 mL, PP.
 - 2.3.3. Membrane filter: 0.22 µm, PVDF.
- **2.4.** Mobile phase
 - **2.4.1.** Solvent A

Dilute 1 mL of formic acid with deionized water to 1000 mL, and filter with a membrane filter.

2.4.2. Solvent B

Dilute 1 mL of formic acid and 200 mL of acetonitrile with methanol to 1000 mL, and mix well.

2.5. Standard solution preparation

Transfer appropriate amount of N-nitroso salbutamol reference standard

accurately weighed into a 10-mL volumetric flask, dissolve and dilute to volume with methanol to 1000 µg/mL as the standard stock solutions. Store at -20°C and protect from light. Upon use, mix appropriate volume of the standard stock solution and dilute with deionized water to 0.025-100 ng/mL as the standard solution.

2.6. Standard calibration curve establishment

Accurately inject 10 μ L of the standard solution into LC-MS/MS separately, and operate according to the following conditions. Establish the standard calibration curve of *N*-nitroso salbutamol by the peak area of *N*-nitroso salbutamol vs. the concentrations of *N*-nitroso salbutamol.

LC-MS/MS operating conditions^(note):

Column: XSelect HSS T3, 3.5 µm, 3 mm i.d. × 15 cm.

Column temperature: 40°C.

Mobile phase: a gradient program of solvent A and solvent B is as follows.

Time (min)	A (%)	B (%)
$0.0 \rightarrow 1.0$	$95 \rightarrow 95$	$5 \rightarrow 5$
$1.0 \rightarrow 5.0$	$95 \rightarrow 50$	$5 \rightarrow 50$
$5.0 \rightarrow 6.5$	$50 \rightarrow 50$	$50 \rightarrow 50$
$6.5 \rightarrow 7.5$	$50 \rightarrow 35$	$50 \rightarrow 65$
$7.5 \rightarrow 8.5$	$35 \rightarrow 35$	$65 \rightarrow 65$
$8.5 \rightarrow 9.5$	$35 \rightarrow 0$	$65 \rightarrow 100$
$9.5 \rightarrow 12.0$	$0 \rightarrow 0$	$100 \rightarrow 100$
$12.0 \rightarrow 12.1$	$0 \rightarrow 95$	$100 \rightarrow 5$
12.1 → 15.0	$95 \rightarrow 95$	$5 \rightarrow 5$

Flow rate: 0.6 mL/min.

Inject volume: 10 µL.

Ion spray voltage: 4.5 kV.

Ionization mode: ESI.

Ion source temperature: 450°C. Nebulizer gas, Gas 1: 50 psi.

Heated gas, Gas 2: 60 psi.

Curtain gas: 25 psi. Collision gas: High.

Detection mode: multiple reaction monitoring (MRM). Selected ion pair,

declustering	potential	and	collision	energy	are	as
follows.						

	lon pair	Declustering	Collision
Analyte	Precursor ion (m/z)>	potential	energy
	Product ion (m/z)	(V)	(eV)
<i>N</i> -nitroso salbutamol	267 > 151*	18	33
N-HILLOSO Salbulation	267 > 204	10	34

^{*} Quantitative ion pair

Note: 1. All the parameters can be adjusted depending on the instruments used if the above conditions are not applicable.

2. If a divert valve is available, the direction of the mobile phase can be diverted as follows.

Time (min)	Position
0.0 → 5.0	Waste
5.0 → 9.0	MS
9.0 → 15.0	Waste

2.7. Sample solution preparation

Transfer about 0.01 g of sample accurately weighed to a 10-mL volumetric flask, and add 8 mL of deionized water. Mix well, sonicate for 10 min, and dilute with deionized water to volume. Transfer to a 15-mL centrifugal tube, and centrifuge at 3000 ×g for 5 min. Filter the supernatant with a membrane filter, and take the filtrate as the sample solution.

2.8. Identification and quantification

Accurately inject 10 μ L of sample solution and standard solution into LC-MS/MS separately, and operate according to the conditions in section 2.6. Identify *N*-nitroso salbutamol based on the retention time and the relative ion intensities^(note). Calculate the amount of *N*-nitroso salbutamol in the sample by the following formula:

The amount of *N*-nitroso salbutamol in the sample ($\mu g/g$) = $\frac{C \times V}{M} \times 10^{-3}$ Where,

C: the concentration of *N*-nitroso salbutamol in the sample solution calculated by the standard calibration curve (ng/mL)

V: the final make-up volume of the sample (mL)

M: the weight of the sample (g)

Note: Relative ion intensities are calculated by peak areas of quantitative ions divided by peak areas of qualitative ions (≤ 100%). Maximum permitted tolerances of relative ion intensities by LC-MS/MS are as the follows.

Relative ion intensity (%)	Tolerance (%)
> 50	± 20
> 20-50	± 25
> 10-20	± 30
≤ 10	± 50

Remark

- 1. Limit of quantification (LOQ) for N-nitroso salbutamol is 0.025 μ g/g.
- 2. Further validation should be performed when interference compounds appear in samples.

Reference

- 1. Wu, J., Ding, C., Ge, Q., Li, Z., Zhou, Z. and Zhi, X. 2011. Simultaneous determination of ipratropium and salbutamol in rat plasma by LC-MS/MS and its application to a pharmacokinetic study J. Chromatogr. B 879: 3475-3483.
- Chang, S. H., Chang, C. C., Wang, L. J., Chen, W. C., Fan, S. Y., Zang, C. Z., Hsu, Y. H., Lin, M. C., Tseng, S. H. and Wang, D. Y. 2020. A multi-analyte LC-MS/MS method for screening and quantification of nitrosamines in sartans. J. Food Drug Anal. 28: 98-107.

Reference chromatogram

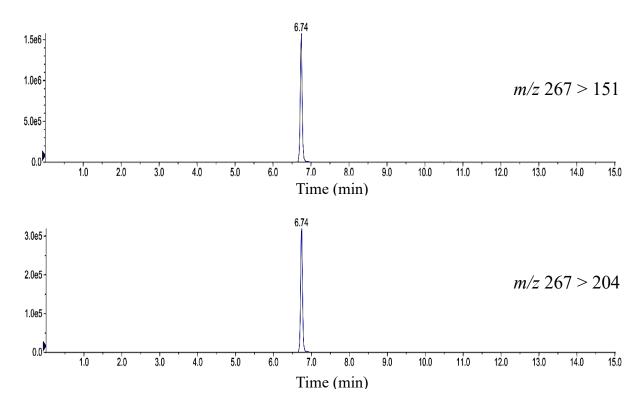


Figure. The MRM chromatograms of *N*-nitroso salbutamol standard analyzed by LC-MS/MS.