Method of Test for Synthetic Cannabinoids in Urine (1)

1. Scope

This method is applicable to the determination of 39 synthetic cannabinoids (AB-CHMINACA etc. listed as the attached table) in urine.

2. Method

After hydrolysis and purification, analytes are determined by liquid chromatography/tandem mass spectrometery (LC-MS/MS).

2.1. Equipment

- 2.1.1. Liquid chromatograph/tandem mass spectrometer
 - **2.1.1.1.** Ion source: electrospray ionization (ESI)
 - **2.1.1.2.** Column: Sunshell[®] RP-AQUA, 2.6 μm, 2.1 mm i.d. × 10 cm, or an equivalent product
- 2.1.2. Vortex mixer
- 2.1.3. Ultrasonicator
- 2.1.4. Reciprocal shaking water bath
- 2.1.5. Nitrogen evaporator
- **2.1.6.** Solid phase vacuum extraction manifold
- 2.2. Chemicals
 - Methanol and acetonitrile, HPLC grade;
 - β-glucuronidase (100,000 units/mL);
 - Acetic acid, analytical grade;
 - Ethyl acetate, sodium acetate (CH₃COONa), reagent grade;
 - Formic acid, mass spectrometry grade;
 - Artificial urine (UTAK 88121-CDF(L) or an equivalent product), reagent grade;
 - Deionized water, resistivity \geq 18 M Ω ·cm (at 25°C);
 - AB-CHMINACA etc. listed in the attached table, reference standards;
 - AB-CHMINACA-d₄ and other isotope-labeled internal standards (listed in the attached table).

2.3. Apparatus

- 2.3.1. Volumetric flask: 1 mL and 10 mL
- 2.3.2. Centrifuge tube: 15 mL, PP
- 2.3.3. Membrane filter: 0.22 µm, PVDF
- **2.3.4**. Solid-supported liquid-liquid extraction cartridge: Novum[™] SLE cartridge, 3 mL, or an equivalent product
- 2.4. Reagent solution preparation

2.4.1. 0.1 M sodium acetate solution

Dissolve and dilute 0.82 g of sodium acetate with deionized water to 100 mL.

2.4.2. 20% acetic acid solution

Dilute 20 mL of acetic acetate with 80 mL of deionized water to 100 mL.

2.5. Mobile phase

2.5.1. Solvent A

Dilute 1 mL of formic acid with deionized water to 1000 mL, mix well and filter with a membrane filter.

2.5.2. Solvent B

Dilute 1 mL of formic acid with methanol/acetonitrile solution (1:1, v/v) to 1000 mL, mix well and filter with a membrane filter.

2.6. Internal standard solution preparation

Transfer 1 mg of the 18 internal standards accurately weighed into each 10-mL volumetric flask, dissolve and dilute with methanol to volume as the internal standard stock solutions. Store at -20° C in the dark. Upon use, mix adequate volume of the internal standard stock solutions, and dilute with methanol to 1 µg/mL as the internal standard solution.

2.7. Standard solution preparation

Transfer 1 mg of the 39 reference standards accurately weighed into each 10-mL volumetric flask, dissolve and dilute with methanol to volume as the standard stock solutions. Store at -20° C in the dark. Upon use, mix adequate volume of the standard stock solutions, and dilute with methanol to 1 µg/mL as the standard solution.

2.8. Sample solution preparation

2.8.1. Hydrolysis

Mix 1 mL of the homogenized sample accurately with 20 μ L of the internal standard solution, and 1 mL of 0.1 M sodium acetate solution in a 15 mL centrifuge tube. Add 500 μ L of β -glucuronidase and mix well. Transfer the above solution into the reciprocal shaking water bath and incubate at 56 °C with 80 rpm for 15 min. Allow the solution to cool to room temperature and add 500 μ L of 20% acetic acid solution for subsequent purification.

2.8.2. Purification

Transfer accurate 400 µL of the hydrolyzed sample solution mentioned in

section 2.8.1. into the solid-supported liquid-liquid extraction cartridge and hold for 5 min. Elute the cartridge with 0.9 mL of ethyl acetate for twice. Collect the eluent and evaporate to dryness by gently flushing with a steam of nitrogen at 40°C. Dissolve the residue with 1 mL of methanol and filter with a membrane filter as the sample solution.

2.9. Calibration curve

Use the artificial urine as the blank sample. Separately take 5-100 μ L of the standard solution and mix with artificial urine to 1 mL. Prepare the calibration solutions following the procedure in section 2.8. Operate LC-MS/MS according to the following conditions. Establish the calibration curve of each synthetic cannabinoid by the ratios of the peak area of each synthetic cannabinoid to that of the internal standard vs. the added concentrations (5-100 ng/mL).

LC-MS/MS operating conditions⁽¹⁾:

Column: SunShell[®] RP-AQUA, 2.6 µm, 2.1 mm i.d. × 10 cm

Column temperature: 40°C

Injection volume: 3 µL

Mobile phase: a gradient program of solvent A and solvent B is as follows.

Time (min)	A (%)	B (%)
0.0 ightarrow 0.5	$60 \rightarrow 60$	$40 \rightarrow 40$
0.5 ightarrow 12.0	$60 \rightarrow 10$	$40 \rightarrow 90$
$12.0 \rightarrow 12.5$	$10 \rightarrow 10$	$90 \rightarrow 90$
$12.5 \rightarrow 12.6$	$10 \rightarrow 60$	$90 \rightarrow 40$
$12.6 \rightarrow 14.5$	$60 \rightarrow 60$	$40 \rightarrow 40$

Flow rate: 0.4 mL/min

Ion spray voltage:

Electrospray ionization positive mode (ESI⁺): 5.5 KV

Electrospray ionization negative mode (ESI⁻): -4.5 KV

Turbo heater temperature: 550°C

Nebulizer gas (GS1): 50 psi

Heated gas (GS2): 60 psi

Curtain gas: 30 psi

Collision gas: Medium

Detection mode: multiple reaction monitoring (MRM). Selected ion pairs, declustering potential and collision energy are shown in

the attached table.

- Note 1: All the parameters can be adjusted depending on the instruments used if the above conditions are not applicable.
- 2.10. Identification and quantification

Accurately inject 3 μ L of the sample solution and the calibration standard solutions into LC-MS/MS separately. Operate according to the conditions in section 2.9. Identify each synthetic cannabinoid based on the retention time and the relative ion intensities⁽²⁾. Calculate the amount (ng/mL) of each synthetic cannabinoid in the sample by the following formula:

The amount of each synthetic cannabinoid in the sample (ng/mL) = $\frac{C \times V}{M}$

Where:

- C: the concentration of each synthetic cannabinoid in the sample solution calculated by the calibration curve (ng/mL)
- V: the final make-up volume of the sample (mL)
- M: the volume of the sample (mL)
- Note 2: Relative ion intensities are calculated by peak areas of quantitative ions divided by peak areas of qualitative ions (≤ 100%). Maximum permitted tolerances of relative ion intensities are as the following:

Relative ion intensity (%)	Tolerance (%)
> 50	± 20
> 20-50	± 25
> 10-20	± 30
≤ 10	± 50

Remark

- 1. Limit of quantification (LOQ) for each synthetic cannabinoid is 50 ng/mL.
- 2. Further validation should be performed when interference compounds appear in the samples.

Reference

Scheidweiler, K. B. and Huestis, M. A. 2014. Simultaneous quantification of 20 synthetic cannabinoids and 21 metabolites, and semi-quantification of 12 alkyl hydroxy metabolites in human urine by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1327: 105-117.

Reference chromatograms

Figure. The MRM chromatograms of 39 synthetic cannabinoids and 18 internal standards analyzed by LC/MS/MS.

Figure. The MRM chromatograms of 39 synthetic cannabinoids and 18 internal standards analyzed by LC/MS/MS (continued).

Figure. The MRM chromatograms of 39 synthetic cannabinoids and 18 internal standards analyzed by LC/MS/MS (continued).

Figure. The MRM chromatograms of 39 synthetic cannabinoids and 18 internal standards analyzed by LC/MS/MS (continued).

Figure. The MRM chromatograms of 39 synthetic cannabinoids and 18 internal standards analyzed by LC/MS/MS (continued).

Table. MRM parameters of 39 synthetic cannabinolds and 18 internal standards.

	Ion pairs	Declustering	Collision		
Analyte	Precursor ion (<i>m/z</i>)	potential	energy	Internal Standard	
	> product ion (<i>m/z</i>)	(V)	(eV)		
AB-CHMINACA	357 > 241*	59	35		
	357 > 312	59	23	AB-CHIMIINACA-04	
AB-CHMINIACA metabolite M4	259 > 241*	53	21	1\A/H_018 NIDA_d_	
	259 > 145	53	34	JWIT 010 IVI A 05	
	369 > 253*	83	32		
	369 > 324	83	21	AB-I UDINACA-U4	
AR ELIRINACA motobolito 2	370 > 109*	76	70	LID 144 NIDA d	
AB-FUBINACA Metabolite 5	370 > 253	76	31	0K-144 NPA-05	
	331 > 215*	40	36		
	331 > 286	40	20		
AB-PINACA N-(4-hydroxypentyl) metabolite	347 > 330*	65	14		
(AB-PINACA N4HP)	347 > 213	65	38	UR-144 NPA-d ₅	
AB-PINACA 5-pentanoic acid metabolite	361 > 316*	64	22		
(AB-PINACA NPA)	361 > 217	64	42	UR-144 NPA-d ₅	
	383 > 338*	72	21		
	383 > 253	72	36	AB-FUBIINACA-04	
ADBICA N-pentanoic acid metabolite	377 > 244*	58	30		
(ADBICA NPA)	377 > 144	58	52	UR-144 NPA-05	
AKB48 N-(4-hydroxypentyl) metabolite	382 > 135*	56	30		
(AKB48 N4HP)	382 > 93	56	75	JWH-018 NPA-d ₅	
AKB48 N-pentanoic acid metabolite	396 > 135*	75	29		
(AKB48 NPA)	396 > 93	75	73	UR-144 NPA-d ₅	
ANA 2201	360 > 155*	117	37	AM-2201-d ₅	
AM-2201	360 > 127	117	70		
AM-2201 N-(4-hydroxypentyl) metabolite	376 > 155*	76	34		
(AM-2201 N4HP)	376 > 127	76	61	AM-2201 N4HP-d ₅	
CP 47,497-C8-homolog C-8-hydroxy	349 > 175*	59	19		
metabolite (8-HydroxyCP-47497)	349 > 331	59	12	UK-144 NPA-05	
	364 > 219*	60	33		
4F-MDMB-BINACA	364 > 304	60	23	ΑΔ-ΓΟΒΙΙΝΑϹΑ-Ο4	

*Quantitative ion

	Ion pairs	Declustering	Collision		
Analyte	Precursor ion (<i>m/z</i>)	potential	energy	Internal Standard	
	> product ion (<i>m/z</i>)	(V)	(eV)		
	377 > 232*	89	32		
SF-MDMB-PICA	377 > 144	89	48	AM-2201-d ₅	
5-fluoro MDMB-PINACA metabolite 7	364 > 233*	89	32	UR-144 NPA-d ₅	
(5F-ADB metabolite 7)	364 > 318	89	22		
5-fluoro AKB48 N-(4-hydroxypentyl) metabolite	400 > 135*	136	28	LID 144 NDA d	
(5F-AKB48 N4HP)	400 > 93	136	74	UK-144 INPA-05	
(S)-5F-AMB acid metabolite	350 > 233*	120	28		
(5F-AMB acid metabolite)	350 > 145	120	53	UR-144 NOHP-05	
FUB-PB-22 3-carboxyindole metabolite	270 > 109*	68	25		
(FUB-PB-22 3CI)	270 > 83	68	81	JWH-018 NPA-05	
	340 > 155*	142	32	NA/LL 019 d	
ЈЖН-022	340 > 127	142	60	JVVH-010-09	
	328 > 155*	151	32	NA/11 072 d	
50-11075	328 > 127	151	65	JVVII-075-07	
	336 > 121*	129	27	114/11 2E0 d	
ЈШП-250	336 > 91	129	65	JVVH-250-05	
JWH-073 N-butanoic acid metabolite	358 > 155*	55	30		
(JWH-073 NBA)	358 > 127	55	64	JVVH-205 NPA-05	
JWH-018 N-(5-hydroxypentyl) metabolite	358 > 155*	75	29		
(JWH-018 N5HP)	358 > 127	75	67	JV0H-010 NPA-05	
JWH-019 N-(6-hydroxyhexyl) metabolite	372 > 155*	91	32	UR-144 NPA-d ₅	
(JWH-019 N6HH)	372 > 127	91	72		
JWH-073 N-(3-hydroxybutyl) metabolite	344 > 155*	40	34		
(JWH-073 N3HB)	344 > 127	40	60	JWH-203 NPA-d ₅	
JWH-081 N-(5-hydroxypentyl) metabolite	388 > 185*	152	33		
(JWH-081 N5HP)	388 > 157	152	58	JVVH-U81 N5HP-d5	
JWH-122 <i>N</i> -(5-hydroxypentyl) metabolite	372 > 169*	85	32	JWH-122 N5HP-d₅	
(JWH-122 N5HP)	372 > 115	85	97		
JWH-210 N-(5-hydroxypentyl) metabolite	386 > 183*	145	34	JWH-210 N4HP-d ₅	
(JWH-210 N5HP)	386 > 153	145	65		

Table. MRM parameters of 39 synthetic cannabinoids and 18 i internal standards (continued).

*Quantitative ion.

Table. MRM parameters of 39 synthetic cannabinoids and 18 internal standards (continued).

	Ion pairs	Declustering	Collision		
Analyte	Precursor ion (<i>m/z</i>)	potential	energy	Internal Standard	
	> product ion (<i>m/z</i>)	(V)	(eV)		
JWH-250 N-(4-hydroxypentyl) metabolite	352 > 121*	86	28		
(JWH-250 N4HP)	352 > 91	86	67	JWH-250 N4HP-d ₅	
JWH-018 <i>N</i> -pentanoic acid metabolite	372 > 155*	72	33		
(JWH-018 NPA)	372 > 127	72	74	JWH-UI8 NPA-d5	
JWH-203 N-pentanoic acid metabolite	370 > 125*	135	34		
(JWH-203 NPA)	370 > 200	135	27	JWH-203 NPA-05	
JWH-210 <i>N</i> -pentanoic acid metabolite	400 > 183*	70	34		
(JWH-210 NPA)	400 > 153	70	70	JWH-210 N4HP-05	
MDMP CLIMICA matchalita M2	371 > 240*	79	28	LID 144 NIDA d	
	371 > 144	79	48	UR-144 NPA-05	
(±)-11-nor-9-carboxy-Δ9-THC	343 > 245*	-140	-38		
(THCA)	343 > 191	-140	-42	THCA-09	
UR-144 N-(4-hydroxypentyl) metabolite	328 > 125*	94	27		
(UR-144 N4HP)	328 > 97	94	34	UR-144 N5HP-05	
UR-144 N-pentanoic acid metabolite	342 > 125*	47	30	LID 144 NIDA d	
(UR-144 NPA)	342 > 244	47	32	0R-144 NPA-05	
XLR-11 N-(4-hydroxypentyl) metabolite	346 > 125*	94	28		
(XLR-11 N4HP)	346 > 248	94	33	ALK-11 N4HP-05	
AB-CHMINACA-d ₄ (I.S.)	361 > 245	114	35	-	
AB-FUBINACA-d ₄ (I.S.)	373 > 328	68	21	-	
AB-PINACA-d ₉ (I.S.)	340 > 224	40	36	-	
AM-2201-d ₅ (I.S.)	365 > 127	31	73	-	
AM-2201 N-(4-hydroxypentyl) metabolite-d ₅		0.0	25	-	
(AM-2201 N4HP-d ₅) (I.S.)	301 > 155	88	35		
JWH-018-d ₉ (I.S.)	351 > 155	36	33	-	
JWH-073-d ₇ (I.S.)	335 > 155	76	33	-	
JWH-250-d₅ (I.S.)	341 > 121	46	27	-	
JWH-081 N-(5-hydroxypentyl) metabolite-d ₅			110 20		
(JWH-081 N5HP-d ₅) (I.S.)	393 > 185	811	32	-	
JWH-122 N-(5-hydroxypentyl) metabolite-d ₅	277 \$ 100	01	22		
(JWH-122 N5HP-d ₅) (I.S.)	3/1 > 109	91	33	-	

*Quantitative ion

	Ion pairs	Declustering	Collision	
Analyte	Precursor ion (<i>m/z</i>)	potential	energy	Internal Standard
	> product ion (<i>m/z</i>)	(V)	(eV)	
JWH-210 N-(4-hydroxypentyl) metabolite-d ₅	391 > 183	111	32	_
(JWH-210 N4HP-d ₅) (I.S.)				
JWH-250 N-(4-hydroxypentyl) metabolite-d5	357 > 121	70	29	_
(JWH-250 N4HP-d ₅) (I.S.)		70		
JWH-018 N -pentanoic acid metabolite-d ₅	377 > 155	64	34	_
(JWH-018 NPA-d ₅) (I.S.)				
JWH-203 N-pentanoic acid metabolite-d $_5$	375 > 125	73	35	_
(JWH-203 NPA-d ₅) (I.S.)				
(±)-11-nor-9-carboxy-∆9-THC-d ₉	252 > 254	-160	-38	_
(THCA-d ₉) (I.S.)	352 > 254			
UR-144 N-(5-hydroxypentyl) metabolite-d5	333 > 125	74	25	_
(UR-144 N5HP-d ₅) (I.S.)				
UR-144 5-pentanoic acid metabolite-d ₅	347 > 125	64	31	_
(UR-144 NPA-d ₅) (I.S.)				
XLR-11 <i>N</i> -(4-hydroxypentyl) metabolite-d ₅		83	29	_
(XLR-11 N4HP-d₅) (I.S.)	351 > 125			

Table. MRM parameters of 39 synthetic cannabinoids and 18 internal standards (continued).