

Contents lists available at ScienceDirect

Forensic Science International

journal homepage: www.elsevier.com/locate/forsciint

A LC-MS/MS method for determination of 73 synthetic cathinones and related metabolites in urine

Shu-Yu Fan, Chi-Zong Zang^{*}, Po-Han Shih, Ya-Chun Ko, Ya-Hui Hsu, Mei-Chih Lin, Su-Hsiang Tseng, Der-Yuan Wang

Food and Drug Administration, Ministry of Health and Welfare, Executive Yuan, 161-2 Kunyang St., Nangang Dist., Taipei City, 11561, Taiwan

ARTICLE INFO

Article history: Received 1 June 2020 Received in revised form 17 July 2020 Accepted 17 July 2020 Available online 31 July 2020

Keywords: Drug of abuse LC-MS/MS New psychoactive substance Synthetic cathinones Urine

ABSTRACT

Synthetic cathinones, which are a group of β -keto analogs of phenethylamine, have been reported as the most emerging new psychoactive substances in the past decade. The quantity and variety of synthetic cathinones have continued to increase, which poses considerable risks to public health and social security. In this study, an analytical method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) was established for the simultaneous determination of 73 synthetic cathinones and related metabolites in urine. The chromatographic analysis was performed using a Kinetex[®] Biphenyl column (10 cm \times 2.1 mm, 1.7 μ m), applying a gradient mobile phase, comprising 0.1 % formic acid aqueous solution with 5 mM ammonium acetate and 0.1 % formic acid methanolic solution; the entire run time of the analysis was within 8 min. The multiple reaction monitoring (MRM) mode was employed to collect the monitoring and quantitative ion pairs. Intra-day/inter-day precision and accuracy were less than 10 % for all the studied analytes. The limits of detection and quantification for all the analytes were 0.1–0.5 ng/ mL and 0.5-1.0 ng/mL, respectively. The matrix effect was satisfactory for all the analytes, with a deviation lower than 20 %. The present method was further applied to 67 authentic urine samples in which 13 different synthetic cathinones were detected from 32 positive samples. The abuse of polysynthetic cathinones was examined that up to seven items was detected in one case from authentic samples in this study.

 $\ensuremath{\mathbb{C}}$ 2020 Elsevier B.V. All rights reserved.

1. Introduction

New psychoactive substances (NPS) have emerged as a threat in recent years. According to the UNODC World Drug Report 2018, the top five NPS in 2017 by amount were synthetic cannabinoids, ketamine, synthetic cathinones, tryptamines, and phenethylamines [1]. In Europe, more than 670 NPS were being monitored by 2017 [2]. To evade the law, increasing varieties of NPS are synthesized. Among these compounds, synthetic cathinones are notorious for their varieties and hazards.

Cathinone, a natural stimulant produced by the "khat" plant, has been used for a long history in East Africa and the Arabian Peninsula [3]; it resembles amphetamine in terms of chemical structure and physical effects, and has been controlled by UNODC listing in Schedule I of the 1971 Single Convention on Psychotropic Substances. In the 1920s, some compounds mimicking the chemical structure of cathinone, such as methcathinone and mephedrone, were synthesized and regarded as the first synthetic

Corresponding author.
 E-mail address: heavenincry@fda.gov.tw (C.-Z. Zang).

http://dx.doi.org/10.1016/j.forsciint.2020.110429 0379-0738/© 2020 Elsevier B.V. All rights reserved. cathinones [4]. Since then, more and more related compounds were synthesized. Synthetic cathinones are β -keto analogs of phenethylamine inhibiting transport of monoamines, such as serotonin, norepinephrine, and dopamine, and even affect central nervous system function by increasing synaptic concentrations of monoamines [5,6].

Initially, synthetic cathinones were produced for medicinal purposes; however, the severe side effects of these compounds overrode the advantages in medical use [7]. Synthetic cathinones were labeled as "legal highs" or "bath salts" and the production and abuse have been increasing worldwide since the 2000s [8,9,10,11,12]. Fatalities are continuously reported since the first report was revealed in Europe in 2008 [13]. The poly-drug abuse related to synthetic cathinones and other substances has been observed frequently among drug users and poses a challenge in terms of identifying targets from similar analogs. The chromatography coupled with mass spectrometer (MS) have introduced the ion monitoring mode (e.g. selected ion monitoring of MS or multiple reaction monitoring of MS/MS) as an effective tool for screening NPS of same category. This technique increases selectivity and sensitivity of target analysis by means of designating ions of desired analytes and decreasing noise from non-target

Table 1

MRM parameters of 73 target analytes and 14 IS of synthetic cathinones.

Ite m	Analyte	Retention time (min)	Ion pairs	DP (V)	CE (eV)	Referential I (by Item)
			Precursor $(m/z) >$ Product (m/z)			(25 1001)
1	Cathinone	1.73	150 > 132* 150 > 117	19 19	16 30	80
2	Methcathinone	1.99	164 > 146* 164 > 131	33 33	17 28	74
3	Ethcathinone	2.36	178 > 132* 178 > 130	48 48	24 40	83
4	Mephedrone (4- methylmethcathinone)	3.08	178 > 145* 178 > 144	37 37	28 39	75
5	N-EC ephedrine (metabolite of ethylcathinone)	2.08	180 > 117* 180 > 115	19 19	29 39	78
5	4-Methylephedrine (metabolite of mephedrone)	2.58	180 > 147* 180 > 91	24 24	29 35	76
7	3, 4-DMMC norephedrine (metabolite of 3, 4- DMMC)	2.97	180 > 162* 180 > 130	22 22	15 33	77
3	4-FMC (4-	2.07	182 > 164* 182 > 149	25 25	18 28	78
9	fluoromethcathinone) 4-Fluoroephedrine	1.84	184 > 135*	17	27	77
10	(metabolite of 4-FMC) 4-EMC (4-	4.12	184 > 151 192 > 144*	17 54	29 40	83
11	ethylmethcathinone) 4-MeMABP (4-	3.78	192 > 77 192 > 145*	54 28	67 29	80
12	methylbuphedrone) 3, 4-DMMC (3, 4-	4.05	192 > 161 192 > 159*	28 63	16 30	75
13	dimethylmethcathinone) 4-MEC (4-	3.48	192 > 158 192 > 174*	63 41	41 17	75
14	methylethcathinone) Methedrone (4-	2.84	192 > 130 194 > 161*	41 38	48 27	81
15	methoxymethcathinone) 4-Methyl- <i>N</i> -ethyl- norephedrine	3.04	194 > 118 194 > 176* 194 > 131	38 33 33	50 17 28	79
16	(metabolite of 4-MEC) 4-FEC (4-	2.41	196 > 178*	44	17	80
17	fluoroethcathinone) 4-CMC (4-	3.04	196 > 150 198 > 145*	44 34	26 26	85
18	chloromethcathinone) α-PPP (alpha-	2.96	198 > 144 204 > 105*	34 70	40 29	83
19	pyrrolidinopropiophenone) MPD	4.51	204 > 98 206 > 144*	70 62	33 44	80
20	(methylpentedrone) 4-EEC (4-	4.45	206 > 105 206 > 188*	62 44	27 18	83
21	ethylethcathinone) 4-MeOEC (4-	3.24	206 > 159 208 > 146*	44 55	27 40	75
22	methoxyethcathinone) Mexedrone	3.40	208 > 175 208 > 158* 208 - 170	55 41	26 19	80
23	Methylone	2.52	208 > 176 208 > 160* 208 > 132	41 30 30	17 24 37	80
24	α-PPT (alpha- pyrrolidinopropiothiophenone)	2.46	210 > 98* 210 > 111	68 68	29 33	84
25	4-CDC (4- chlorodimethylcathinone)	3.26	210 > 111 $212 > 139^*$ 212 > 167	43 43	28 22	80
26	4-CEC (4- chloroethcathinone)	3.43	212 > 107 212 > 194* 212 > 159	49 49	19 25	80
27	4-MPPP (4-methyl-α-	4.04	212 > 159 $218 > 119^*$ 218 > 147	49 30 30	25 34 25	80
28	pyrrolidinopropiophenone) 4-MEAPP (4-methyl-α- ethylaminopentiophenone)	4.79	218 > 147 $220 > 105^*$ 220 > 160	50 54 54	25 30 26	74
29	N-Ethyl hexedrone (alpha- ethylaminohexanophenone)	4.62	220 > 180 220 > 130* 220 > 146	54 59 59	28 48 25	80
30	4-F-α-PPP (4-fluoro- alpha- pyrrolidinopropiophenone)	2.92	222 > 123* 222 > 98	34 34	32 34	85
31	Butylone	3.21	222 > 131* 222 > 191	35 35	48 17	81
32	Ethylone	2.94	222 > 131 222 > 174* 222 > 146	33 33	25 35	82
33	α-PBT (alpha- pyrrolidinobutiothiophenone)	3.04	$224 > 110^{*}$ $224 > 112^{*}$ 224 > 153	66 66	29 22	85

Ite m	Analyte	Retention time (min)	Ion pairs	DP (V)	CE (eV)	Referential (by Item)
			Precursor $(m/z) >$ Product (m/z)			(by item)
34	α-PVP (alpha-	4.30	232 > 91*	55	31	83
	pyrrolidinovalerophenone)		232 > 126	55	35	
35	4-Methyl-α-PBP (4-	4.56	232 > 105*	78	35	85
	methyl-alpha-		232 > 161	78	24	
	pyrrolidinobutiophenone)					
86	α-PVP metabolite 1	4.45	234 > 72*	63	25	83
	(metabolite of α -PVP)		234 > 91	63	39	
57	MOPPP (4-methoxy-	3.78	234 > 98*	78	28	87
	alpha-		234 > 135	78	32	
	pyrrolidinopropiophenone)					
38	4-F-α-PBP (4-fluoro-	3.51	236 > 109*	43	36	83
	alpha-		236 > 165	43	24	
	pyrrolidinobutiophenone)					
39	Pentylone	4.04	236 > 188*	32	24	80
			236 > 218	32	18	
łO	bk-DMBDB	3.45	236 > 191*	50	20	80
	(dibutylone)		236 > 149	50	32	
11	4-Cl-α-PPP (4-chloro-	3.97	238 > 139*	66	34	82
	alpha-		238 > 98	66	39	
	pyrrolidinopropiophenone)					
42	2, 5-Dimethoxy	4.67	238 > 220*	26	17	75
	mephedrone (2, 5-		238 > 189	26	28	
	dimethoxy-4-					
10	methylmethcathinone)	a (a				
43	4-BMC (4-	3.42	242 > 145*	37	23	75
	bromomethcathinone)		242 > 128	37	61	
44	α-PHP (alpha-	4.94	246 > 91*	81	32	85
	pyrrolidinohexanophenone)	5.00	246 > 140	81	35	05
45	Pyrovalerone	5.06	246 > 105*	81	32	85
10		0.51	246 > 126	81	33	
46	3, 4-MDPPP (3, 4-	3.51	248 > 98*	73	30	80
	methylenedioxy-alpha-		248 > 149	73	34	
	pyrrolidinopropiophenone)	4.05	240 421*		20	00
47	4-MeOPBP (4-	4.35	248 > 121*	58	38	82
	methoxy-alpha-		248 > 135	58	36	
40	pyrrolidinobutiophenone)	4.22	250 100*	64	22	00
48	4-F-α-PVP (4-fluoro-	4.22	250 > 109*	64	32	80
	alpha-		250 > 126	64	35	
10	pyrrolidinovalerophenone)	4.11	250 104*	10	10	00
49	D-Tertylone (3, 4-	4.11	250 > 194*	18	18	80
	methylenedioxy-N-		250 > 146	18	29	
-0	tert-butylcathinone) Ephylone (N-	4.20	250 . 202*	40	20	05
50	1 5 (4.39	250 > 202*	40	26	85
51	ethylpentylone)	4 27	250 > 232 250 > 205*	40	21	80
51	bk-DMBDP (<i>N</i> , <i>N</i> -	4.27	250 > 205* 250 > 175	59 50	22	80
50	dimethyl pentylone) Benzedrone	5 45	250 > 175 254 > 01*	59 26	28	9 <i>F</i>
52	Delizeurone	5.45	254 > 91* 254 > 65	36	45 72	85
53	N-BMC (N-	5.11	254 > 65 254 > 162*	36 42	73 21	74
	benzylmethcathinone)	J.11	$254 > 162^{\circ}$ $254 > 146^{\circ}$	42 42	21 22	/4
54	4-BEC (4-	3.83	254 > 146 $256 > 159^*$	42 50	22	74
77	4-BEC (4- bromoethcathinone)	2.02	256 > 159 256 > 144	50	24 39	/4
55	α -PHPP (alpha-	5.49	250 > 144 $260 > 91^*$	85	32	85
	α-PHPP (appla- pyrrolidinoheptiophenone)	J. 1 3	260 > 91 260 > 154	85	32	60
56	4 -Methyl- α -PHP (4-	5.53	260 > 134 $260 > 105^*$	85 93	31	85
	methyl-alpha-	5.55	260 > 140	93	37	05
	pyrrolidinohexanophenone)		200 / 110	55	5,	
57	3, 4-Dimethyl- α -PVP (3,	5.56	260 > 119*	45	31	85
	4-dimethyl-alpha-	5.55	260 > 126	45	34	00
	pyrrolidinovalerophenone)		200 / 120	15	51	
58	3, 4-MDPBP (3, 4-	4.15	262 > 112*	60	32	80
	methylenedioxy-alpha-	1,15	262 > 161	60	31	00
	pyrrolidinobutiophenone)		202 / 101	00	51	
59	4 -MeO- α -PVP (4-	4.09	262 > 121*	75	34	85
	methoxy-alpha-	ч.03	262 > 121 262 > 126	75	30	05
	pyrrolidinovalerophenone)		202 / 120	15	50	
60	4-F-PHP (4-fluoro-	4.86	264 > 109*	80	33	86
	alpha-	1 .00	264 > 109 264 > 140	80	37	00
	pyrrolidinohexanophenone)		207 / 190	30	10	

S.-Y. Fan et al. / Forensic Science International 315 (2020) 110429

Table 1 (Continued)

Ite m	Analyte	Retention time (min)	lon pairs	DP (V)	CE (eV)	Referential I (by Item)	
		· · ·	Precursor $(m/z) >$ Product (m/z)			(-,)	
61	4-Cl-α-PVP (4-chloro-	5.00	266 > 125*	69	34	85	
	alpha-		266 > 195	69	25		
	pyrrolidinovalerophenone)						
52	Indanyl-α-PVP (3, 4-	6.02	272 > 131*	74	34	85	
	trimethylene-alpha-		272 > 201	74	26		
	pyrrolidinovalerophenone)						
53	α-POP (alpha-	6.02	274 > 91*	97	33	85	
	pyrrolidinooctanophenone)		274 > 168	97	36		
54	MDPV	4.75	276 > 205*	79	25	86	
	(methylenedioxypyrovalerone)		276 > 126	79	35		
65	4-F-PHPP (4-fluoro-	5.41	278 > 109*	44	33	85	
	alpha-		278 > 154	44	38		
	pyrrolidinoheptiophenone)						
66	Demethylenyl-methyl-	3.35	278 > 175*	80	27	86	
	MDPV (metabolite of		278 > 126	80	34		
	MDPV)						
67	4-Br-α-PPP (4-bromo-	4.33	282 > 132*	72	32	83	
	alpha-		282 > 98	72	34		
	pyrrolidinopropiophenone)						
68	Naphyrone	5.78	282 > 141*	100	36	85	
	1 5		282 > 211	100	26		
69	TH-PVP (3, 4-	6.66	286 > 145*	82	35	87	
	tetramethylene-alpha-		286 > 215	82	28		
	pyrrolidinovalerophenone)						
70	α-PNP (alpha-	6.61	288 > 91*	40	35	87	
	pyrrolidinononanophenone)		288 > 182	40	39		
71	4-Methoxy PHPP (4-	5.90	290 > 121*	87	33	87	
	methoxy-alpha-		290 > 219	87	25		
	pyrrolidinoheptiophenone)		200 / 210	0,	20		
72	TH-PHP (3, 4-	7.16	300 > 145*	79	36	87	
	tetramethylene-alpha-		300 > 140	79	39	0,	
	pyrrolidinohexanophenone)		5007 110		50		
73	4-Methoxy-α-POP (4-	6.50	304 > 121*	73	34	87	
/5	methoxy-alpha-	0.50	304 > 121 304 > 233	73	26	07	
	pyrrolidinooctanophenone)		504 2 255	75	20		
74	Methcathinone-d ₃	1.98	167 > 130*	26	40	_	
75	Methedrone-d ₃	3.05	$181 > 148^*$	31	31	_	
76	4-Methylephedrine-d ₃	2.56	183 > 131*	22	27		
77	3, 4-DMMC	7.09	183 > 105*	22	24	_	
//	norephedrine-d ₃	7.05	185 > 185	27	24	-	
78	<i>N</i> -EC ephedrine- d_5	2.07	185 > 115*	24	41		
79	4-Methyl- <i>N</i> -ethyl-	3.02	199 > 131*	33	28	-	
/9	norephedrine-d ₅	5.02	199 > 151	22	28	-	
30		2.51	211 > 163*	29	25		
80 81	Methylone-d ₃ Butylone-d ₃	2.51 3.20	$211 > 103^{\circ}$ $225 > 177^{*}$	35	25 26	-	
	3		$225 > 177^{\circ}$ $227 > 179^{*}$			-	
82	Ethylone-d ₅	2.92		28	26	-	
83	α -PVP-d ₈	4.27	240 > 91*	85	32	-	
84	3, 4-MDPPP-d ₈	3.47	256 > 106*	80	31	-	
85	3, 4-MDPBP-d ₈	4.11	270 > 161*	82	33	-	
86	3, 4-MDPV-d ₈	4.72	284 > 134*	91	36	-	
87	Naphyrone-d ₅	5.91	287 > 141*	80	34	-	

* quantifier.

compounds [14]. Therefore, chromatography techniques, such as GC–MS and LC–MS/MS, are effective tools employed frequently in forensic and clinical toxicology applications for the detection of versatile psychoactive substances and are time-saving with run times less than 40 min [15,16,17,18].

LC–MS/MS is a technique widely used in laboratories due to its superior sensitivity, selectivity, and adaptability compared to GC–MS [18–20]. LC–MS/MS methods for the determination of synthetic cathinones have been reported previously. Waters et al. consolidated a GC–MS/MS and LC–MS/MS database for the detection of psychotropic compounds comprising 29 synthetic cathinones [21]. In addition, several studies have applied LC–MS/MS for the determination of 5–11 synthetic cathinones with varying limit of detection (LOD) and limit of quantification (LOQ) [19–22]. However, more synthetic cathinones have been synthesized and abused with time in recent years. The capability of previously reported methods was limited in detecting synthetic cathinones that

are more diverse. Meanwhile, most studies focused on developing methods for the analysis of multi-type drugs rather than specific group of analytes such as synthetic cathinones.

To expand the applicability and variety for detecting synthetic cathinones, this study aimed to develop a sensitive method to simultaneously determine 73 synthetic cathinones and related metabolites in urine using LC–MS/MS. The present method was further applied to analyze authentic samples to examine the synthetic cathinones abused in Taiwan.

2. Materials and methods

2.1. Reagents

Reference standards of pyrovalerone, 3, 4-methylenedioxypyrovalerone metabolite 1 (demethylenyl-methyl-MDPV, metabolite of MDPV) and α -pyrrolidinovalerophenone

Fig. 1. Total ion chromatograms (TIC) of 73 target analytes and 14 IS of synthetic cathinones in urine, numbered by MRM order from Table 1. (a) Overall TIC; (b), (c), (d) Separate TICs.

Table 2

Linearity, LOD, and LOQ of 73 target analytes of synthetic cathinones.

Item	Analyte	Concentration range (ng/mL)	Linearity (R)	LOD (ng/mL)	LOQ (ng/mL)
1	Cathinone	0.5-50	0.9993	0.1	0.5
2	Methcathinone	0.5-50	0.9999	0.1	0.5
3	Ethcathinone	0.5-50	0.9999	0.1	0.5
4	Mephedrone	0.5-50	0.9997	0.1	0.5
5	N-EC ephedrine	0.5-50	0.9998	0.1	0.5
6	4-Methylephedrine	0.5-50	0.9999	0.1	0.5
7	3, 4-DMMC norephedrine	1.0-50	0.9950	0.5	1.0
8	4-FMC	1.0-50	0.9997	0.5	1.0
9	4-Fluoroephedrine	0.5-50	0.9999	0.1	0.5
10	4-EMC	1.0-50	0.9984	0.5	1.0
11	4-MeMAPB	0.5-50	0.9993	0.1	0.5
12	3, 4-DMMC	0.5-50	0.9994	0.1	0.5
13	4-MEC	0.5-50	0.9996	0.1	0.5
14	Methedrone	0.5-50	0.9998	0.1	0.5
15	4-Methyl-N-ethyl-norephedrine	0.5-50	0.9977	0.1	0.5
16	4-FEC	0.5-50	0.9998	0.1	0.5
17	4-CMC	0.5-50	0.9975	0.1	0.5
18	α-PPP	0.5-50	0.9981	0.1	0.5
19	MPD	0.5-50	0.9989	0.1	0.5
20	4-EEC	0.5-50	0.9971	0.1	0.5
20	4-MeOEC	0.5-50	0.9997	0.1	0.5
22	Mexedrone	0.5–50	0.9995	0.1	0.5
22	Methylone	0.5–50	0.9995	0.1	0.5
23 24	α-ΡΡΤ	0.5-50	0.9973	0.1	0.5
25	4-CDC	1.0-50	0.9976	0.5	1.0
26	4-CEC	1.0-50	0.9982	0.5	1.0
27	4-MPPP	0.5-50	0.9991	0.1	0.5
28	4-MEAPP	0.5-50	0.9989	0.1	0.5
29	N-Ethyl hexedrone	1.0-50	0.9983	0.5	1.0
30	$4-F-\alpha-PPP$	0.5–50	0.9980	0.1	0.5
31	Butylone	1.0-50	0.9991	0.5	1.0
32	Ethylone	0.5-50	0.9998	0.1	0.5
33	α-PBT	0.5-50	0.9964	0.1	0.5
34	α-PVP	0.5-50	0.9999	0.1	0.5
35	4-Methyl-α-PBP	0.5-50	0.9976	0.1	0.5
36	α -PVP metabolite 1	0.5-50	0.9988	0.1	0.5
37	MOPPP	0.5-50	0.9988	0.1	0.5
38	4-F-α-PBP	1.0-50	0.9988	0.5	1.0
39	Pentylone	0.5-50	0.9994	0.1	0.5
40	bk-DMBDB	0.5-50	0.9993	0.1	0.5
41	4-Cl-α-PPP	0.5-50	0.9997	0.1	0.5
42	2, 5-Dimethoxy mephedrone	0.5-50	0.9994	0.1	0.5
43	4-BMC	1.0-50	0.9986	0.5	1.0
44	α-ΡΗΡ	0.5-50	0.9997	0.1	0.5
45	Pyrovalerone	0.5-50	0.9999	0.1	0.5
46	3, 4-MDPPP	1.0–50	0.9996	0.5	1.0
47	4-MeOPBP	0.5–50	0.9998	0.1	0.5
48	4-F-α-PVP	0.5–50	0.9960	0.1	0.5
48 49		0.5–50	0.9999	0.1	0.5
	D-Tertylone Ephylopo				
50 51	Ephylone	0.5-50	0.9998	0.1	0.5
51	bk-DMBDP	0.5-50	0.9955	0.1	0.5
52	Benzedrone	0.5-50	0.9996	0.1	0.5
53	N-BMC	1.0-50	0.9988	0.5	1.0
54	4-BEC	0.5-50	0.9999	0.1	0.5
55	α-ΡΗΡΡ	0.5-50	0.9981	0.1	0.5
56	4-Methyl-α-PHP	0.5–50	0.9996	0.1	0.5
57	3, 4-Dimethyl-α-PVP	0.5-50	0.9992	0.1	0.5
58	3, 4-MDPBP	0.5-50	0.9983	0.1	0.5
59	4-MeO-α-PVP	0.5-50	0.9998	0.1	0.5
60	4-F-PHP	0.5-50	0.9984	0.1	0.5
61	4-Cl-α-PVP	0.5-50	0.9996	0.1	0.5
62	Indanyl-α-PVP	0.5-50	0.9997	0.1	0.5
63	α-ΡΟΡ	0.5-50	0.9996	0.1	0.5
64	MDPV	0.5-50	0.9997	0.1	0.5
65	4-F-PHPP	0.5-50	0.9995	0.1	0.5
66	Demethylenyl-methyl-MDPV	1.0-50	0.9997	0.5	1.0
67			0.9997		
	4-Br-α-PPP	1.0-50		0.5	1.0
68	Naphyrone	0.5-50	0.9995	0.1	0.5
69	TH-PVP	0.5-50	0.9997	0.1	0.5
70	α-PNP	0.5-50	0.9995	0.1	0.5
71	4-Methoxy PHPP	0.5-50	0.9997	0.1	0.5
72	TH-PHP	0.5-50	0.9997	0.1	0.5
73	4-Methoxy-α-POP	0.5-50	0.9999	0.1	0.5

Table 3

Matrix effect, precision and accuracy for 73 target analytes of synthetic cathinones.

Item	Analyte	Spiked concentration	Matrix effect		Intra-day		Inter-day	
		(ng/mL)	Value	RSD (%)	Precision (% CV)	Accuracy (% bias)	Precision (% CV)	Accuracy (% bias)
1	Cathinone	5	1.13	2.98	0.43	6.53	2.97	6.12
		25	1.05	4.31	2.87	7.27	4.25	10.83
		50	0.98	2.02	2.63	2.72	1.63	3.76
2	Methcathinone	5	0.88	1.45	0.93	6.03	2.25	3.18
		25	0.91	0.59	1.07	3.20	3.81	1.08
2		50	0.92	0.56	0.78	1.83	3.56	1.77
3	Ethcathinone	5 25	1.12	0.67	0.83	1.53 1.84	2.39 3.76	1.00 0.90
		23 50	1.07 1.04	2.77 1.23	2.20 0.63	2.62	4.30	2.24
4	Mephedrone	5	0.94	1.25	0.21	0.45	1.46	0.18
•	mephearone	25	0.94	2.24	1.61	0.09	3.39	1.64
		50	0.96	2.79	1.55	7.19	6.35	5.51
5	N-EC ephedrine	5	0.89	1.72	1.11	2.97	1.68	4.26
	-	25	1.03	2.38	1.51	5.24	2.52	6.94
		50	1.02	1.87	1.40	5.01	1.44	3.72
6	4-Methylephedrine	5	0.95	0.48	0.65	2.52	1.11	1.32
		25	0.95	2.07	0.29	2.61	2.46	2.30
		50	0.96	0.99	0.27	2.97	2.39	0.18
7	3, 4-DMMC norephedrine	5	0.98	3.71	3.08	10.00	3.72	8.06
		25	1.00	1.74	1.60	10.87	3.10	10.10
		50	0.96	2.94	2.82	0.68	2.52	2.25
8	4-FMC	5	1.10	2.09	4.44	1.28	2.65	1.42
		25	0.97	4.14	0.66	1.01	3.04	0.80
		50	0.95	2.38	0.87	1.60	2.28	0.45
9	4-Fluoroephedrine	5	1.07	1.48	0.41	5.30	3.13	1.78
		25	1.07	3.08	2.01	5.19	3.38	2.54
		50	1.02	2.02	0.79	4.35	4.24	0.59
10	4-EMC	5	0.97	0.47	0.77	1.69	2.24	0.24
		25	0.98	0.68	1.05	3.52	3.58	1.56
11	4 34-34400	50	1.00	3.55	1.85	7.94	6.90	2.54
11	4-MeMAPB	5	1.00	2.81	1.12	7.75	3.69	5.94
		25	0.96	5.58	4.05	5.24	4.35	7.91
10	2 4 DMMC	50 5	0.95	3.58	2.48	0.80	1.54	1.53
12	3, 4-DMMC	5 25	0.95 0.97	2.38	1.35	0.34 2.09	2.87	2.92
		23 50	0.97	1.13 3.62	0.74 2.17	5.26	3.02 6.50	0.65 0.03
13	4-MEC	5	0.99	1.29	0.23	0.71	2.36	3.52
15	4-MEC	25	0.98	1.29	1.02	0.91	3.48	0.49
		50	0.98	1.45	1.46	5.40	6.57	0.93
14	Methedrone	5	0.96	1.85	1.40	0.36	2.66	2.60
14	Wetheurone	25	0.97	1.81	1.55	1.71	2.96	0.56
		50	0.99	2.87	2.51	8.46	6.51	3.47
15	4-Methyl- <i>N</i> -ethyl-norephedrine	5	0.97	1.55	1.12	1.46	3.71	6.60
	· ····································	25	0.97	2.85	0.65	2.71	3.94	0.18
		50	0.94	0.91	0.77	1.59	3.58	3.64
16	4-FEC	5	1.14	0.62	0.57	3.49	2.67	1.00
		25	1.08	2.07	2.43	3.03	4.07	0.07
		50	1.03	1.00	0.46	2.39	4.75	2.89
17	4-CMC	5	0.81	0.62	1.58	10.97	4.60	15.24
		25	0.87	1.26	1.42	1.06	5.50	5.04
		50	0.94	3.06	3.32	2.53	7.66	8.62
18	α-PPP	5	0.93	3.26	2.15	1.58	2.01	3.08
		25	0.96	3.41	2.68	0.04	2.56	1.00
		50	0.97	1.78	1.09	0.82	3.97	3.86
19	MPD	5	1.01	3.23	0.36	3.77	3.57	5.80
		25	0.97	3.38	1.71	1.86	3.64	3.36
		50	0.97	1.09	1.47	2.25	0.98	1.95
20	4-EEC	5	0.95	2.03	2.25	2.03	2.49	0.34
		25	0.98	0.52	1.46	2.86	3.06	1.57
		50	0.96	2.80	2.10	6.71	6.26	2.43
21	4-MeOEC	5	1.00	1.75	1.22	0.39	2.73	2.16
		25	0.98	1.45	0.86	1.80	3.00	1.44
		50	0.99	4.18	2.33	9.00	6.38	5.34
22	Mexedrone	5	0.97	2.40	0.68	4.54	3.93	3.36
		25	0.97	3.63	2.03	4.01	3.72	6.19
		50	0.96	2.11	2.18	2.88	1.46	2.82
23	Methylone	5	0.99	2.62	0.26	6.43	2.60	4.56
		25	0.96	3.72	2.90	2.53	4.31	3.04
		50	0.95	2.08	1.64	1.92	1.73	0.45
24	α-PPT	5	0.94	3.54	1.38	1.57	1.70	2.94
		25	0.97	2.91	2.65	0.35	2.18	0.46
	4 60 6	50	0.98	3.94	2.30	0.98	4.09	3.40
25	4-CDC	5	1.01	4.00	0.83	8.35	5.11	8.28
		25	0.97	3.92	3.53	2.45	4.78	6.34

Table 3 (Continued)

tem	Analyte	Spiked concentration (ng/mL)	Matrix effect Intra-day			Inter-day		
		(IIG/IIIL)	Value	RSD (%)	Precision (% CV)	Accuracy (% bias)	Precision (% CV)	Accuracy (% bia
		50	0.96	3.58	2.35	4.22	1.49	5.36
26	4-CEC	5	0.86	2.75	1.31	5.99	2.87	5.26
		25	0.86	3.63	2.55	2.39	4.28	4.78
		50	0.92	2.72	1.98	2.01	1.45	2.28
27	4-MPPP	5	0.99	0.46	0.53	6.63	1.73	5.20
		25	0.99	2.68	1.75	3.56	2.61	3.43
		50	0.97	2.65	0.77	1.14	2.45	1.55
28	4-MEAPP	5 25	1.00 0.95	4.65 3.07	0.65 2.95	5.68 1.62	3.47 3.97	4.08 3.86
		23 50	0.95	1.53	1.29	2.24	0.76	1.88
29	N-Ethyl hexedrone	5	0.95	4.12	2.42	7.03	3.22	4.82
	N-Ethyl nexectione	25	0.97	1.39	0.73	0.56	2.94	1.60
		50	0.98	2.11	1.25	4.60	1.70	2.49
80	4-F-α-PPP	5	0.91	3.13	3.13	1.82	2.52	3.38
		25	0.96	3.03	2.05	1.62	1.96	1.04
		50	0.97	2.85	1.33	0.76	3.84	3.45
81	Butylone	5	0.96	1.44	0.67	0.42	1.56	1.18
	-	25	0.97	2.26	1.15	1.58	2.85	1.45
		50	0.97	2.53	1.03	1.61	2.49	1.03
32	Ethylone	5	0.94	1.37	0.68	2.83	1.82	0.98
		25	0.96	1.79	0.97	2.97	3.11	3.11
		50	0.95	0.92	0.64	0.57	2.51	1.74
33	α-ΡΒΤ	5	0.94	3.85	1.45	5.34	2.81	7.16
		25	1.00	2.82	2.01	0.27	2.83	1.58
		50	1.00	4.52	2.72	0.97	5.07	4.54
34	α-PVP	5	0.95	3.87	2.17	0.27	1.88	0.76
		25	0.98	2.38	1.58	0.31	2.03	0.31
_		50	0.98	1.53	1.48	1.67	3.54	2.17
35	4-Methyl-α-PBP	5	0.95	2.73	1.19	3.32	2.27	5.36
		25	0.98	3.66	2.13	0.88	1.96	1.32
~		50	0.98	1.49	1.20	1.18	4.14	3.64
6	α -PVP metabolite 1	5	0.95	3.47	1.94	1.41	2.38	0.30
		25	0.99	3.94	2.84	3.84	2.19	3.20
-	MODDD	50	0.99	2.55	1.48	0.43	3.93	3.92
37	MOPPP	5	0.97	0.88	0.58	3.74	1.83	1.98
		25	0.95	2.97	1.25	2.16	3.11	2.72
0	4 E DDD	50 5	0.95	3.25	2.77	2.16	2.82	0.36
8	4-F-α-PBP	25	0.94 0.98	3.34 2.59	2.30 2.23	0.31 1.61	2.09 2.20	1.42 1.01
		50	0.98	3.22	2.23	1.19	4.52	3.71
89	Pentylone	5	1.01	2.31	1.14	7.43	1.75	5.48
5	rentylone	25	0.99	1.87	0.73	4.94	2.66	5.52
		50	0.98	1.47	0.64	1.51	2.41	0.68
10	bk-DMBDB	5	0.96	2.02	1.09	3.53	1.25	3.26
		25	0.99	1.97	0.73	3.18	2.35	3.42
		50	0.98	2.34	1.30	1.90	2.62	0.67
1	4-Cl-α-PPP	5	0.93	1.93	1.87	1.71	2.02	0.32
		25	0.97	2.66	2.20	1.37	1.89	1.46
		50	0.97	1.99	2.06	3.22	3.89	0.94
2	2, 5-Dimethoxy mephedrone	5	1.08	4.81	2.99	1.29	3.98	1.26
	- L -	25	0.99	8.46	5.17	1.00	6.14	1.36
		50	0.94	5.66	2.16	7.55	7.21	6.65
3	4-BMC	5	0.81	1.54	1.56	3.62	1.15	3.80
		25	0.87	0.56	0.63	3.67	4.62	3.81
		50	0.93	2.85	0.84	0.65	6.79	0.98
4	α-PHP	5	0.95	2.04	0.81	1.99	2.05	2.26
		25	0.96	0.87	1.00	0.56	2.76	0.52
		50	0.97	2.33	1.91	2.94	2.74	0.24
5	Pyrovalerone	5	0.96	0.31	0.21	2.93	1.74	1.78
		25	0.95	2.43	0.85	1.24	2.71	2.06
_		50	0.95	2.03	1.96	1.53	2.50	0.97
6	3, 4-MDPPP	5	0.96	1.16	1.29	0.07	1.21	0.76
		25	0.95	2.38	1.42	0.66	3.00	1.60
7		50	0.94	3.10	2.28	1.81	2.43	0.34
7	4-MeOPBP	5	0.94	1.05	0.83	1.17	1.49	1.70
		25	0.93	2.11	0.49	1.39	2.96	0.96
		50	0.94	2.89	2.28	1.60	3.03	1.46
48	4-F-α-PVP	5	0.91	3.38	2.03	5.47	5.51	7.70
8		25	0.98	8.21	5.68	2.29	3.69	3.61
8				7.25	5.34	3.61	6.60	3.46
	D. Tentulou -	50	1.03					
	D-Tertylone	5	0.98	1.70	0.42	3.68	1.41	2.96
	D-Tertylone	5 25	0.98 0.99	1.70 2.63	0.42 1.69	3.68 1.98	1.41 3.09	2.96 2.16
18 19 10	D-Tertylone Ephylone	5	0.98	1.70	0.42	3.68	1.41	2.96

Item	Analyte	Spiked concentration	Matrix effect		Intra-day		Inter-day	
		(ng/mL)	Value	RSD (%)	Precision (% CV)	Accuracy (% bias)	Precision (% CV)	Accuracy (% bia
		50	0.96	1.77	0.66	0.30	2.01	1.55
51	bk-DMBDP	5	1.07	0.79	3.13	10.69	6.42	10.36
		25	0.99	5.70	6.39	4.15	5.62	5.15
		50	0.90	7.00	4.28	1.08	3.07	3.55
2	Benzedrone	5	0.91	2.25	1.56	1.35	2.74	1.86
		25	0.92	4.19	1.79	1.22	4.43	1.23
		50	0.94	3.33	2.35	2.25	4.85	7.07
3	N-BMC	5	0.92	2.54	1.33	2.02	2.70	0.01
		25	0.92	3.20	3.62	2.11	3.35	3.24
		50	0.97	3.66	3.97	7.96	6.99	2.26
4	4-BEC	5	0.82	2.09	1.10	2.08	3.19	3.16
		25	0.85	4.96	3.56	0.51	5.68	2.17
		50	0.90	3.03	2.47	2.04	2.03	0.87
5	α-PHPP	5	1.02	1.92	0.76	1.95	5.10	2.12
		25	0.97	8.64	5.03	1.32	6.49	0.19
		50	0.94	8.83	4.30	3.95	4.94	1.68
6	4-Methyl-α-PHP	5	0.99	0.91	0.16	0.87	1.13	1.76
		25	0.95	3.34	1.58	0.65	3.59	0.40
		50	0.94	3.38	2.79	0.21	2.51	1.58
7	3, 4-Dimethyl-α-PVP	5	0.95	0.22	0.61	3.52	3.84	5.56
	-	25	0.91	6.83	6.01	4.91	6.46	4.68
		50	0.94	7.34	3.99	3.02	5.39	6.36
8	3, 4-MDPBP	5	0.99	1.78	1.07	1.00	1.77	1.24
		25	0.97	3.59	1.90	1.29	3.12	2.30
		50	0.91	3.03	1.77	0.85	1.99	0.96
9	4-MeO-α-PVP	5	0.92	0.93	0.77	0.57	1.66	0.12
-		25	0.93	1.47	1.58	2.07	2.48	2.35
		50	0.90	2.16	0.87	0.33	1.45	0.18
0	4-F-PHP	5	1.01	2.40	1.77	9.23	3.15	8.84
00	4-1-111	25	0.96	3.48	2.42	2.76	4.34	7.05
		50	0.96	2.28	1.51	5.47	1.08	6.50
1	4-Cl-α-PVP	5	0.97	1.32	0.56	1.99	1.58	2.32
1	4-01-0-1 11	25	0.93	3.39	1.14	0.48	3.54	1.29
		50	0.95	3.48	2.97	1.23	2.29	0.36
2	Indonul - DVD	5						
52	Indanyl-a-PVP		0.98	1.06	0.41	2.13	1.86	0.02
		25 50	0.95 0.94	1.33 1.91	1.17 1.60	1.61	4.15 3.42	0.83
	α-ΡΟΡ	5				2.11	1.75	5.51 2.20
53	α-ΡΟΡ		0.94	1.90	0.73	1.61		
		25	0.96	1.43	1.04	3.27	3.92	3.66
		50	0.92	1.97	0.86	1.98	1.42	1.98
4	MDPV	5	0.97	0.93	0.93	2.00	2.75	1.26
		25	0.95	1.81	1.01	1.56	3.54	1.03
_		50	0.93	2.80	2.11	0.77	2.73	2.79
55	4-F-PHPP	5	0.97	1.38	0.55	1.67	1.63	2.52
		25	0.96	2.10	0.78	0.85	3.62	2.11
_		50	0.96	2.90	2.52	2.09	2.72	0.28
6	Demethylenyl-methyl-MDPV	5	0.94	2.27	1.47	3.99	2.29	1.52
		25	0.94	0.97	1.34	3.41	3.20	2.81
		50	0.94	1.70	1.47	1.18	2.79	1.28
57	4-Br-α-PPP	5	0.96	2.02	0.88	1.69	1.36	1.00
		25	0.95	3.33	1.48	2.21	3.32	2.83
		50	0.94	3.31	2.97	1.69	2.24	0.17
68	Naphyrone	5	0.96	2.20	1.29	0.37	2.77	
		25	0.93	2.64	1.71	0.41	4.21	
		50	0.90	2.31	1.19	0.01	1.35	
9	TH-PVP	5	0.98	0.81	0.52	3.39	2.34	1.12
		25	0.95	2.69	1.09	0.73	4.44	0.12
		50	0.95	2.67	2.03	1.73	3.93	5.63
0	α-PNP	5	0.85	1.00	0.58	3.86	2.13	2.10
		25	0.92	1.49	0.82	2.74	5.81	1.40
		50	0.94	1.95	1.59	0.55	4.21	5.14
1	4-Methoxy PHPP	5	0.94	1.55	0.20	2.08	1.68	2.08
•	. memory i i i i	25	0.94	1.32	0.88	2.14	3.87	3.89
		50	0.90	0.74	0.48	2.14	1.52	1.40
2	TH-PHP	5	0.94	1.86	1.20	4.80	3.76	4.56
4	111-1111	25	0.89	1.88			6.06	3.62
					0.55	0.63		
72	4 Motherary POP	50	0.92	1.79	1.12	2.15	1.72	0.89
3	4-Methoxy-α-POP	5	0.87	0.37	0.30	3.96	2.78	3.98
		25	0.96	1.10	0.84	1.95	4.71	3.22
		50	0.96	0.85	1.04	3.21	2.17	0.85

metabolite (α -PVP metabolite 1, metabolite of α -PVP) were obtained from Cayman Chemical (Ann Arbor, Michigan, USA). Standards of 4-fluoroephedrine (metabolite of 4-FMC), Nethylcathinone ephedrine (N-EC ephedrine, metabolite of ethylcathinone), 4-methylephedrine (metabolite of mephedrone), 3, 4dimethylmethcathinone norephedrine (3, 4-DMMC norephedrine, metabolite of 3, 4-DMMC), 4-methyl-N-ethyl-norephedrine (metabolite of 4-MEC) and all isotopically labelled internal standards were methanolic solutions (1 mg/mL) obtained from Cerilliant Corporation (Austin, Texas, USA). All remaining standards listed in Table 1 were synthesized by GreenChem Corporation (Taichung, Taiwan). The full names and abbreviations of all analytes are shown in Table 1. Formic acid, methanol, and ammonium acetate were purchased from Sigma-Aldrich Corporation (Saint Louis, Missouri, USA). LC-MS grade water was purchased from Scharlau (Barcelona, Spain). Artificial urine was purchased from UTAK Laboratories, Inc. (Valencia, California, USA). In total, 67 authentic urine samples were collected and provided by the local law enforcement agencies which the sampling in this study followed the regulations made by Ministry of Health and Welfare, Taiwan

2.2. Instrumentation and chromatographic conditions

The experiments were performed on a Waters Acquity UPLC® system (Waters Assoc., Milford, Massachusetts, USA) coupled to a AB SCIEX QTRAP[®] 6500 triple quadrupole linear ion trap mass spectrometer equipped with an electrospray ionization (ESI) source (Applied Biosystems, MDS Sciex, Concord, Ontario, Canada) and operated in multiple reaction monitoring (MRM) mode. Chromatographic analysis was carried out on a Phenomenex Kinetex[®] Biphenyl column (10 cm ×2.1 mm i.d., 1.7 μm) at 40°C with a constant flow rate of 0.5 mL/min using gradient elution of mobile phase A (0.1% formic acid aqueous solution with 5 mM ammonium acetate) and mobile phase B (0.1% formic acid methanolic solution). Each sample was analyzed with an injection volume of 3 µL. The total chromatographic run time was 8 min. Elution was performed as follows: 0-0.5 min 2%-20% B, 0.5-3.0 min 20%-38% B, 3.0-3.2 min 38% B, 3.2-5.0 min 38%-59% B, 5.0-5.4 min 59 % B, 5.4-6.6 min 59%-67% B, 6.7-7.0 min 67%-90% B, and 7.0-8.0 min 90%-100% B. After injection of each sample, the needle was rinsed alternately with methanol and water. The MS ion source was set as ESI in positive mode under the following conditions: ion spray voltage, 5.5 kV; temperature, 550°C; curtain gas pressure, 30 psi; collision gas pressure of medium level; ion source gas, 50 psi.

2.3. Preparation of standard solutions

Stock solutions of the 73 standards and 14 IS were prepared in methanol at 1 mg/mL and 0.1 mg/mL, respectively. The standard stock solution was diluted with artificial urine to 2 μ g/mL to prepare a standard working solution. An adequate volume of each IS stock solution was mixed and, then, diluted with 50 % methanol aqueous solution to 1 μ g/mL to prepare an IS working solution. All stock and working solutions were stored at -20°C and acclimated to controlled room temperature prior to use.

2.4. Sample preparation

The raw urine samples were centrifuged at $3000 \times g$ for 5 min and then collected the supernatant. A mixture solution comprising 50 μ L supernatant, 50 μ L IS working solution (100 ng/mL), and 950 μ L

50% methanol aqueous solution was prepared. The mixture solution was subsequently filtered through a 0.22 μ m PVDF filter and then collected the filtrate which was used for analysis. Drug-free urine (DFU) was used as the negative control sample. The samples were analyzed directly without any pretreatment or purification.

2.5. Method validation

The method was validated following the guideline of Scientific Working Group for Forensic Toxicology Standard Practices (SWGTOX) for Method Validation in Forensic Toxicology [23]. Validation was performed by evaluating the following parameters: carryover, selectivity, linearity, sensitivity, matrix effects, precision, and accuracy. The carryover was evaluated by injecting blank samples after analyzing the spiked urine samples of serial concentrations (100–1000 ng/mL) in triplicate. Selectivity was evaluated by analyzing 10 different DFU samples to ensure absence of interferential peaks for the targets. Good selectivity could be achieved only if signals from endogenous origins of the matrix did not have evident interference as characteristic ions at adjacent retention time so that the analysis could be unimpeded.

Linearity was assessed by analyzing standard solutions of the 73 target analytes of synthetic cathinones (n = 3) at 7 concentrations (0.5, 1.0, 5.0, 10.0, 20.0, 25.0, and 50.0 ng/mL) and plotting the peak area ratio of standard/IS versus the concentration of standard using the least-square method. The correlation coefficient r was determined and the acceptable value was 0.995 and above. The samples were quantified by deducing the content through calibration curve ranged in 0.5–50 ng/mL employing internal standard method.

Sensitivity was evaluated using the LOD and LOQ. The LOD is the lowest concentration of analyte that can be detected with the estimated signal-to-noise (S/N) ratio of 3. The LOQ is the lowest concentration of analyte that can be quantified with suitable precision and accuracy using an estimated S/N ratio of 10. The evaluation of LOD and LOQ for each analyte was performed in six replicates.

Matrix effects were assessed using the direct comparison method. Sets of samples covering three concentration levels, 5, 25, and 50 ng/mL, for the 73 analytes (5 ng/mL IS included) were prepared in DFU (A) and water (B). Matrix effects were evaluated with three replicates (n = 3) and calculated using the following formula:

Matrix effects
$$=\frac{\left(\frac{P}{P'}\right) of A}{\left(\frac{P}{P'}\right) of B};$$

where, P represents peak area of analyte and P' represents peak area of IS.

Precision and accuracy were evaluated by introducing quality control (QC) for the analyte-spiked urine samples. The intra-day and inter-day accuracy (% bias) and precision (% CV) of the assay were assessed at three concentration levels from low to high within the calibration curve (5.0, 25.0, and 50.0 ng/mL) in triplicate over five different runs. The acceptable bias was 20 % of each concentration.

3. Results

3.1. Method development

Pre-tests indicated that the ESI source in positive mode, i.e., monitoring protonated molecular [M+H]⁺ for target analytes, had a stronger response than the negative mode. As this result was consistent with literature, ESI⁺ was selected as the ionization source mode for method development in this study [17]. To attain better specificity, the MRM mode was applied to collect the respective monitoring and quantitative ions. The MRM parameters and referential IS for each analyte are shown in Table 1, whereas the chromatographic analysis was shown as an overall TIC for all analytes in Fig. 1.

3.2. Method validation

For sample analysis, it is important to ensure the authenticity and credibility of chromatographic results. First, carryover and selectivity were evaluated. In the assessment of carryover, no residual peaks were detected in the chromatograph for all analytes, indicating that the preceding sample did not interfere with analysis. To avoid possible carryover that affects the results of identification and quantification, attention should be paid during sample analysis. The selectivity was evaluated and no interferential peaks, traces of IS, or cross-interference among analytes were observed during analysis, indicating that the present method was selective for all analytes.

Linearity was assessed up to 50.0 ng/mL and the correlation coefficient r values were higher than 0.995 for all analytes, indicating that all IS applied in the qualification were highly recommendable for the targets analyzed in this study. The LOD and LOQ determined for all analytes were 0.1–0.5 ng/mL and 0.5–1.0 ng/mL, respectively.

The present method revealed good performance in determining the target analytes of synthetic cathinones and allowed the determination of targets at a low limit. The linearity and sensitivity data are shown in Table 2.

The evaluation of matrix effect for biological specimen analysis involves the sensitivity, precision, accuracy, and reproducibility of the present method as well as quantification of target analytes. Thus, matrix effect becomes an index for whether further pretreatment or purification is needed for samples to obtain better performance in determining target analytes. The matrix effect was satisfactory for all analytes with a deviation lower than 20 % (i.e. 0.8-1.2). The intra-day and inter-day precision and accuracy of the assay was evaluated by analyzing triplicate QC samples at three analyte concentration levels. The intra-day and inter-day precision were 0.16-7.66, whereas the accuracy were 0.04-10.87 % for all analytes. The result was satisfactory within a value within ± 20 % for all analytes. The data of matrix effect, precision and accuracy are shown in Table 3.

3.3. Application to authentic samples

The present method was further applied to analyze authentic urine samples to detect the target analytes and examine the synthetic cathinones abused in Taiwan. In total 67 urine samples were analyzed and the result of analysis is demonstrated in Table 4. The result showed that 32 samples were tested positive of 13 targets, including mephedrone, 4-methylephedrine, butylone, bk-DMBDB, methylone, 4-MEAPP, ephylone, 4-CMC, MPD, 4-CDC, 4-CEC, ethylone, and 4-EEC.

4. Discussion

This study established an inclusive and sensitive LC–MS/MS method for screening synthetic cathinones in urine. In the chromatographic analysis, signals from adjacent peaks with the same mass were observed for couple analytes, such as 4-EMC, 4-MeMABP, and 3,4-DMMC (192); methedrone and 4-methyl-*N*-ethyl-norephedrine (194); MPD and 4-EEC (206); 4-F- α -PPP and butylone (222); α -PVP and 4-methyl- α -PBP (232); α -PHP and pyrovalerone (246); as well as benzedrone and N-BMC (254). Misinterpretation was precluded by cross-comparing the respective retention time of each analyte; the subsequent method validation also confirmed that cross contributions were eliminated

bl	е	4
	bl	ble

Targets detected above LOD from authentic urine samples.

-	Sample No.	Target detected
	1	Mephedrone, 4-Methylephedrine
	4	4-Methylephedrine
	6	Butylone, bk-DMBDB
	8	4-Methylephedrine
	10	Butylone, bk-DMBDB
	12	Mephedrone, 4-Methylephedrine
	22	Methylone
	23	bk-DMBDB
	24	4-MEAPP
	26	Ephylone
	28	Methylone
	30	4-Methylephedrine, 4-CMC, MPD, 4-CDC, 4-MEAPP
	34	4-Methylephedrine
	35	Mephedrone, 4-Methylephedrine
	38	Mephedrone, 4-Methylephedrine, 4-MEAPP, Ephylone
	39	4-Methylephedrine
	40	Mephedrone, 4-Methylephedrine
	41	Mephedrone, 4-Methylephedrine
	42	Ephylone
	45	Mephedrone, 4-Methylephedrine, 4-CDC, 4-CEC, 4-MEAPP,
		Ephylone
	46	4-Methylephedrine
	47	4-CMC, 4-EEC, MPD, 4-CDC, 4-CEC, 4-MEAPP, Ephylone
	54	Ephylone
	55	4-CDC
	57	Mephedrone, 4-Methylephedrine, 4-CEC, 4-MEAPP, Ethylone
	58	4-CMC, 4-CEC, 4-MEAPP, Ephylone
	59	Mephedrone, 4-Methylephedrine
	60	4-Methylephedrine
	61	Mephedrone, 4-Methylephedrine, Ephylone
	64	4-EEC, MPD, 4-MEAPP
	67	Mephedrone, 4-Methylephedrine

and the method demonstrated good specificity in quantifying analytes with the same mass.

The dilute-and-shoot procedure is advantageous in practical forensic applications by diminishing the process of sample preparation. Matrix effect was evaluated and the result indicated an ignorable influence on urinary analysis of synthetic cathinones. In the analysis of authentic samples, 10 out of the 32 positive samples were detected having two to seven synthetic cathinones in one case, indicating that the abuse of poly-synthetic cathinones was observed among drug abusers in Taiwan. According to the report from Taiwan's early warning system of drug abuse "Analytic Laboratory Urine and Drug Abuse Report System" (UDARS), 51 synthetic cathinones were monitored which the top 10 synthetic cathinones reported most frequently in Taiwan were mephedrone, 4-MEAPP, methylone, 4-CEC, CMC, ephylone, ethylone, MPD, bk-DMBDB and 4-MDMC (4-methyl-N, N-dimethylcathinone) [24]. Except for 4-MDMC as a latest item monitored that is not included in this study, all other 9 targets monitored by UDARS were detected, which indicated a same trend as that reported by UDARS. I addition, the present method has incorporated couple fatal cathinones identified in previous reports [6, 25, 26, 27, 28, 29]; some of them, including ephylone, mephedrone/4-methylephedrine, and methedrone were also detected from the authentic samples collected in Taiwan. Besides, it is particularly noteworthy that the fatal synthetic cathinone mephedrone was detected as original form and/or metabolite in the result of urinalysis. For the 18 mephedrone-positive samples, mephedrone and its metabolite 4methylephedrine were detected synchronously in 11 samples while only 4-methylephedrine was detected in seven samples. In contrast with the literatures, the published methods included mephedrone in the list of the targets yet omitted the metabolite 4-methylephedrine which might lead to the false-negative of mephedrone [17,19,20,30]. As a result, the metabolite 4-methylephedrine is recommended to be included in the list while monitoring mephedrone.

Additionally, most studies focused on developing methods for detecting diverse drugs in one procedure; however, with the growing items of synthetic cathinones, the methods became insufficient in detecting drugs of single species. The present method demonstrated a more extensive applicability in analyzing multiple synthetic cathinones compared with previous literatures: Adamowicz and Tokarczyk established a screening method for 143 NPS including 36 synthetic cathinones which 23 items had been incorporated in the method of this study; Waters et al. developed a database applying LC-ESI-MS/MS for detection of 104 abused substances including 29 synthetic cathinones which 17 items had been incorporated in the method of this study [21,30]. Except for the comprehensiveness for detection of synthetic cathinones, the present method possessed a superior sensitivity for determination of synthetic cathinones as compared to previously reported methods. Namely, drugs of various species pose divergent characteristics upon analysis within a single method, such as intensities and sensitivities, which may result in the discrepancy of interpretation or quantification. Al-Sarffar et al. developed a screening method for detection of 27 NPS incorporating 11 synthetic cathinones, for which the LODs and LOQs were 0.8-10 ng/mL and 0.5-50, respectively; Bell et al. established a method for detection of eight NPS incorporating five synthetic cathinones with LODs of 2.0-3.4 ng/mL and LOQs of 6.5-11.3 ng/mL; Tang et al. built up a method for detection of 93 emerging drugs including 6 synthetic cathinones with LODs of 10-100 ng/mL [17,19,20]. The present method demonstrated a better sensitivity for urinary analysis of synthetic cathinones than the literatures mentioned above, which the LODs and LOQs were 0.1-0.5 ng/mL and 0.5-1.0 ng/mL respectively for all 73 targets of this study.

5. Conclusions

An inclusive LC–MS/MS method for determination of 73 synthetic cathinones and related metabolites in urine was established. The present method was further validated and provided good specificity in detecting targets. Authentic urine samples were analyzed by this method which 32 out of 67 samples were detected positive and 13 targets were identified. The abuse of poly-synthetic cathinones in Taiwan was also examined that up to seven cathinones were detected in one case. These results indicated the present method as a feasible technique for identifying multiple components of synthetic cathinones in urine.

Authorship

Conception and design of study: Chi-Zong Zang, Shu-Yu Fan, Ya-Chun Ko, Ya-Hui Hsu, Mei-Chih Lin

Acquisition of data: Shu-Yu Fan, Po-Han Shih, Chi-Zong Zang Analysis and/or interpretation of data: Shu-Yu Fan, Po-Han Shih, Chi-Zong Zang

Drafting the manuscript: Chi-Zong Zang

Revising the manuscript critically for important intellectual content: Ya-Chun Ko, Ya-Hui Hsu, Mei-Chih Lin, Su-Hsiang Tseng, Der-Yuan Wang

Approval of the version of the manuscript to be published: Shu-Yu Fan, Chi-Zong Zang*, Po-Han Shih, Ya-Chun Ko, Ya-Hui Hsu, Mei-Chih Lin, Su-Hsiang Tseng, Der-Yuan Wang

Acknowledgments

We gratefully acknowledge the financial support from Food and Drug Administration, Ministry of Health and Welfare, Taiwan.

References

- [1] United Nations Office on Drugs and Crime, World Drug Report 2018: Global overview of drug demand and supply– latest trends, cross-cutting issues. United Nations publication, Division for Policy, Analysis and Public Affairs, United Nations, Austria.
- [2] European Monitoring Centre for Drugs and Drug Addiction, European Drug Report 2018: Trends and Developments. Publications Office of the European Union, Luxembourg.
- [3] P. Kalix, Cathinone, an alkanoid from khat leaves with an amphetamine-like releasing effect, Psychopharmacology 74 (1981) 269–270.
- [4] M. Coppola, R. Monola, Synthetic cathinones: chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as "bath salts" or "plant food", Toxicol. Lett. 211 (2012) 144–149.
- [5] P. Kalix, Cathinone, a natural amphetamine, Pharmacol. Toxicol. 70 (1991) 77–86.
- [6] Y. Fujita, T. Mita, K. Usui, Y. Kamijo, S. Kikuchi, M. Onodera, et al., Toxicokinetics of the synthetic cathinone α-pyrrolidinohexanophenone, J. Anal. Toxicol. 42 (2018) e1–e5.
- [7] P. Griffiths, D. Lopez, R. Sedefov, A. Gallegos, B. Hughes, A. Noor, et al., Khat use and monitoring drug use in Europe: the current situation and issues for the future, J. Ethnopharmacol. 132 (2010) 578–583.
- [8] S.D. Brandt, S. Freeman, H.R. Summale, F. Measham, J. Cole, Analysis of NRG Legal highs in the UK: identification and formation of novel cathinones, Drug Test. Anal. 2 (2010) 377–382.
- [9] F. Caudevilla-Gálligo, M. Ventura, B.I. Indave Ruiz, I. Fornís, Presence and composition of cathinone derivatives in drug samples taken from a drug test service in Spain (2010–2012), Hum. Psychopharmacol. 28 (2013) 341–344.
- [10] R. Kikura-Hanajiri, N. Uchiyama, M. Kawamura, Y. Goda, Changes in the prevalence of synthetic cannabinoids and cathinone derivatives in Japan until early 2012, Forensic Toxicol. 31 (2013) 44–53.
- [11] J.B. Zawilska, J. Wojcieszak, Designer cathinones—an emerging class of novel recreational drugs, Forensic Sci. Int. 231 (2013) 42–53.
- [12] J. Lee, S. Yang, Y. Kang, E. Han, L.Y. Feng, J.H. Li, et al., Prevalence of new psychoactive substances in Northeast Asia from 2007 to 2015, Forensic Sci. Int. 272 (2017) 1–9.
- [13] D. Gustaffsson, C. Escher, Mephedrone-Internet drug that seems to have come to stay in Swedish, Lkartidningen 106 (2009) 2769–2771.
- [14] M.R. Clench, L.W. Tetler, Chromatography: gas | Detectors: mass spectrometry, Encyclopedia of Separation Science, (2000), pp. 448–455.
- [15] J.J. Pitt, Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry, Clin. Biochem. Rev. 30 (2009) 19–34.
- [16] H.K. Lee, C.S. Ho, Y.P.H. Iu, P.S.J. Lai, C.C. Shek, Y.C. Lo, H.B. Klinkee, M. Wood, Development of a broad toxicological screening technique for urine using ultra-performance liquid chromatography and time-of-flight mass spectrometry, Anal. Chim. Acta 649 (2009) 80–90.
- [17] Y. Al-Saffar, N.N. Stephanson, O. Beck, Multicomponent LC-MS/MS screening method for detection of new psychoactive drugs, legal highs, in urine– Experience from the Swedish population, J. Chromatogr. B. 930 (2013) 112–120.
- [18] M. Majchrzak, R. Celiński, P. Kuś, T. Kowalska, M. Sajewicz, The newest cathinone derivatives as designer drugs: an analytical and toxicological review, Forensic Toxicol. 36 (2018) 33–50.
- [19] C. Bell, C. George, A.T. Kicmana, A. Traynor, Development of a rapid LC-MS/MS method for direct urinalysis of designer drugs, Drug Test. Anal. 3 (2011) 496–504.
- [20] M.H.Y. Tang, C.K. Ching, C.Y.W. Lee, Y.H. Lam, T.W.L. Mak, Simultaneous detection of 93 conventional and emerging drugs of abuse and their metabolites in urine by UHPLC-MS/MS, J. Chromatogr. B. 969 (2014) 272–284.
 [21] B. Waters, N. Ikematsu, K. Hara, H. Fujii, T. Tokuyasu, M. Takayama, A.
- [21] B. Waters, N. Ikematsu, K. Hara, H. Fujii, T. Tokuyasu, M. Takayama, A. Matsusue, M. Kashiwagi, S. Kubo, GC-PCI-MS/MS and LC-ESI-MS/MS database for the detection of 104 psychotropic compounds (synthetic cannabinoids, synthetic cathinones, phenethylamine derivatives), Leg. Med. 20 (2016) 1–7.
- [22] L. Mercolini, M. Protti, M.C. Catapano, J. Rudge, A.E. Sberna, LC–MS/MS and volumetric absorptive micro sampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples, J. Pharm. Biomed. Anal. 123 (2016) 186–194.
- [23] Scientific Working Group for Forensic Toxicology, Scientific working group for forensic toxicology (SWGTOX) standard practices for method validation in forensic toxicology, J. Anal. Toxicol. 37 (2013) 452–474.
- [24] Analytic Laboratory Urine and Drug Abuse Report System of Taiwan, Report of NPS Detected in Taiwan Available at: Accessed March, 2020, http://www.fda. gov.tw/tc/includes/GetFile.ashx?id=f637257561968387416.
- [25] M. Wikström, G. Thelander, I. Nyström, R. Kronstrand, Two fatal intoxications with the new designer drug methedrone (4-methoxymethcathinone), J. Anal. Toxicol. 34 (2010) 594–598.
- [26] P.D. Maskell, G. De Paoli, C. Seneviratne, D.J. Pounder, Mephedrone (4methylmethcathinone)-related deaths, J. Anal. Toxicol. 35 (2011) 188–191.
- [27] T.H. Wright, C. Harris, Twenty-one cases involving alpha-pyrrolidinovalerophenone (α-PVP), J. Anal. Toxicol. 40 (2016) 396–402.
- [28] P.R. Smith, R. Cole, S. Hamilton, K. West, S.R. Morley, P.D. Maskell, Reporting two fatalities associated with the use of 4-methylethcathinone (4-MEC) and a review of the literature, J. Anal. Toxicol. 40 (2016) 553–560.
- [29] P. Thirakul, L.S. Hair, K.L. Bergen, J.M. Pearson, Clinical presentation, autopsy results and toxicology findings in an acute *N*-ethylpentylone fatality, J. Anal. Toxicol. 41 (2017) 342–346.
- [30] P. Adamowicz, B. Tokarczyk, Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography-tandem mass spectrometry, Drug Test. Anal. 8 (2016) 652–667.