Method of Test for Δ^9 -Tetrahydrocannabinol and Cannabidiol in Cosmetics

1. Scope

This method is applicable to the determination of Δ^9 -tetrahydrocannabinol and cannabidiol in cosmetics.

2. Method

After extraction, cannabinoids are determined by liquid chromatograph/ tandem mass spectrometry (LC-MS/MS).

- 2.1. Equipments
- 2.1.1. Liquid chromatograph/tandem mass spectrometer.
- 2.1.1.1. Ion source: electrospray ionization, ESI.
- 2.1.1.2. Column: ACQUITY BEH Shield RP18, 1.7 $\mu m,$ 2.1 mm i.d. \times 10 cm, or an equivalent product.
- 2.1.2. Ultrasonicator.
- 2.2. Chemicals

Methanol, HPLC grade;

Ammonium formate, AR grade;

Deionized water, resistivity \geq 18 M Ω ·cm (at 25°C);

 Δ^9 -Tetrahydrocannabinol (Δ^9 -THC, 1 mg/mL in methanol) and cannabidiol (CBD, 1 mg/mL in methanol), reference standards;

 Δ^9 -Tetrahydrocannabinol-d₃ (Δ^9 -THC-d₃, 100 µg/mL in methanol) and cannabidiol-d₃ (CBD-d₃, 100 µg/mL in methanol), internal standards.

- 2.3. Apparatus
 - 2.3.1. Volumetric flask: 10 mL, 25 mL and 50 mL.
- 2.3.2. Membrane filter: 0.22 $\mu m,$ PTFE.
- 2.4. Mobile phase
 - 2.4.1. Solvent A:

Dissolve and dilute 0.63 g of ammonium formate with deionized water to 1000 mL, and filter with a membrane filter.

- 2.4.2. Solvent B: methanol.
- 2.5. Internal standard solution preparation

Mix 1 mL of Δ^9 -THC-d₃ and CBD-d₃ isotope internal reference standards, and dilute with methanol to 20 mL as the internal standard solution.

2.6. Standard solution preparation

Accurately transfer 1 mL of Δ^9 -THC and CBD reference standards to a 100-mL volumetric flask separately, dissolve and dilute to volume with methanol as stock solutions, and then store in a refrigerator. When to use, mix appropriate volume of the stock solutions and the internal standard solution, and dilute with methanol to 0.02~0.5 µg/mL (containing 0.01 µg/mL internal standard) as the standard solutions.

2.7. Sample solution preparation

Transfer about 1 g of the sample accurately weighed into a 50-mL volumetric flask. Add 40 mL of methanol, and ultrasonicate for 30 min. Dilute to volume with methanol and filter with a membrane filter. Take the filtrate as the sample solution.

2.8. Standard curve preparation

Accurately inject 3 μ L of the standard solutions into LC-MS/MS, and operate LC-MS/MS according to the following conditions. Establish the standard curves of Δ^9 -THC and CBD separately by the ratios of the peak area of Δ^9 -THC and CBD to that of the internal standard vs. the added concentrations.

LC-MS/MS operating conditions^(note):

Column: ACQUITY BEH Shield RP18, 1.7 μ m, 2.1 mm i.d. \times 10 cm. Oven temperature: 30°C.

Mobile phase: a gradient program of solvent A and solvent B is as follows.

Time (min)	A (%)	B (%)			
$0 \rightarrow 5$	$20 \rightarrow 20$	$80 \rightarrow 80$			
$5 \rightarrow 6$	$20 \rightarrow 0$	$80 \rightarrow 100$			
$6 \rightarrow 8$	$0 \rightarrow 0$	$100 \rightarrow 100$			
$8 \rightarrow 8.1$	$0 \rightarrow 20$	$100 \rightarrow 80$			
8.1 → 13	$20 \rightarrow 20$	$80 \rightarrow 80$			

Flow rate: 0.3 mL/min.

Injection volume: 3 µL.

Capillary voltage: 2.8 KV.

Ionization mode: ESI⁺.

Ion source temperature: 150°C.

Desolvation temperature: 350°C.

Cone gas flow rate: 50 L/hr.

Desolvation flow rate: 780 L/hr.

Detection mode: multiple reaction monitoring (MRM). Detection ion pair, cone voltage and collision energy are shown as follows:

as tollows.			
Analyte	Precursor ion (<i>m/z</i>) > Product ion (<i>m/z</i>)	Cone voltage (V)	Collision energy (eV)
Δ ⁹ -THC	315 > 193*	40	20
	315 > 259	40	15
CBD	315 > 193*	40	20
	315 > 259	40	15
Δ^9 -THC-d ₃ (I.S.)	318 > 196	40	15
CBD-d ₃ (I.S.)	318 > 196	40	15

Note: all the parameters can be adjusted depending on the instruments used if the above conditions are not applicable.

2.9. Identification and quantification

Accurately inject 3 μ L the sample solution and the standard solutions into LC-MS/MS separately, and operate according to the conditions described in section 2.8. Identify Δ^9 -THC and CBD based on the retention time and the relative ion intensities^(note). Calculate the amount of Δ^9 -THC or CBD in the sample by the following formula:

The amount of Δ^9 -THC or CBD in the sample (ppm) = $\frac{C \times V}{M}$

Where,

- C: the concentration of Δ^9 -THC or CBD in the sample solution calculated by the standard curve (µg/mL)
- V: the final make-up volume of the sample (mL)
- M: the weight of the sample (g)
- Note: Relative ion intensities are calculated by peak areas of quantitative ions divided by peak areas of qualitative ions (≤100%). Maximum permitted tolerances of relative ion intensities by LC-MS/MS are as follows:

Relative ion intensity	Tolerance
(%)	(%)
> 50	± 20

>	20 ~ 50	± 25
>	10 ~ 20	± 30
≤	10	± 50

Remark

- 1. The limits of quantification (LOQs) for Δ^9 -THC and CBD are 1 ppm.
- 2. Further validation should be performed when interference compounds appear in samples.

Reference

- Meng, Q., Buchanan, B., Zuccolo, J., Poulin, M. M., Gabriele, J. and Baranowski, D. C. 2018. A reliable and validated LC-MS/MS method for the simultaneous quantification of 4 cannabinoids in 40 consumer products. PLoS ONE 13: e0196396.
- Molnar, A., Lewis, J., Doble, P., Hansen, G., Prolov, T. and Fu, S. 2012. A rapid and sensitive method for the identification of delta-9tetrahydrocannabinol in oral fluid by liquid chromatography-tandem mass spectrometry. Forensic Sci. Int. 215: 92-96.

Reference chromatograms

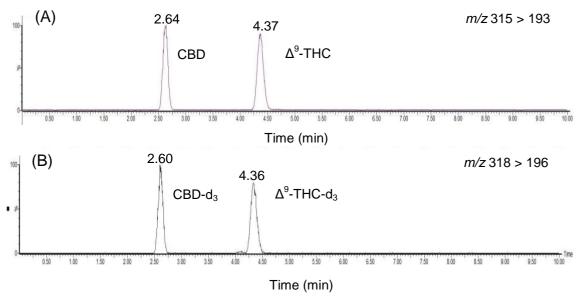


Figure. MRM chromatograms of Δ^9 -THC and CBD standards (A) and the isotopic internal standards (B) analyzed by LC-MS/MS.