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B T E S EREIHEHT#E(Convolutional Neural
Networks, CNN)F1E 25158 (Transformers) °
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B EHEB LR BRI - WHET & ED -
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M A S (Overfitting) B 52 » T FEFHE
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TEVI A T T % T 20 Y OLO B
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GPU (Graphic Processing Unit)3fE775I## -
T HCPUMETTHIIFR - ZUAERFELGPUF B
—EER .

2 JEF Y OLOE AL i F GPUMETTRIIIFR - %
HECUDA" (12 =068 H #38 Fl GPURY T
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GPUNHERE - B & YOLOEAF HEY
W RERE - EEE) - A EEIEGPU
IdGER - Y OLOB AR I FE 158
HRUEE -

3T —(E R R N L E fpytorch " (F
[EEENESE - 5T A i A A B A A B
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from vltralytics import YOLO

if __name__ == '__main__"':
model = YOLO('yolollx.pt') # &k
results = model.train(

data="C:/Users/jeffS5/anaconda3/envs/yolovll/Lib/site-packages/ultralytics/data.yaml",

chs=300, # ¥ 74
Pt

device=0, # {#if GPU 3|
optimizer='S6D', # @[} Adam £ SGD
workers=8, # b3 74
batch=4, # it
amp=True, # {
1r0=0.001, #
1rf=0.1, # {

momentum=0.937, # ik
weight_decay=0.0005, #
warmup_epochs=3.0, #

warmup_momentum=0.8,
warmup_bias_1r=0.1,
cos_lr=True, # h‘i"

B = - FERyolov11xi&BZI#RE H
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ol 1-dieteet py o yalall m ; IO SR py P ERR

reader
mndel

inlations, Tues

# OCR MRS R
current_texts = {}

for i, box in enumerate(results[e].boxes):
x1, y1, x2, y2 = mep(int, box.xyxy[6])

roi = frame[yl:y2, x1:x2]
result = reader.readtext(roi)
text = " “.join([res[1] for res in result])

# b b ved: # » A EITICHE
if previous_texts.get(i) != text and text not in current_texts.values():
if is_violation:
text = f[NERIgM] {text}"

f 10015 r
total_seconds = cap.get(cv2.CAP_PROP_POS_MSEC) / 1008
hours = int(total_seconds // 3600)
minutes = int((total_seconds % 3608) // 68)
seconds = total_seconds ¥ 60
timestamp = f"{hours:02}:{minutes:02}:{seconds:06.3f}"
# iR
text_file.write(f"ssp {timestamp}, Wik [{x1}, {y1}, {x2}, {y2}]: {text}\n")
print (" s sey D", text)
T H NI 7
current_texts[i] = text
¢ &
previous_texts = current_texts
# QR k.
cv2.imshow( winname: ‘video Detection with OCR', annotated_frame)
if cv2.waitKey(1) & OxFF 27:
print(“; )
break
cap.release()
cv2.destroyAllWindows ()
print(f W%

E7< * YOLO#E&OCRS,
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An Exploratory Study on the Application of Image
Recognition Technology in Food Advertising

YUE-HAN KUO, MENG-YING WU AND CHAO-YI WANG
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ABSTRACT

Image recognition technology represents a significant advancement in the fields of artificial
intelligence and computer vision. In particular, the integration of object detection technology—YOLO
(You Only Look Once)—with Optical Character Recognition (OCR) demonstrates broad application
potential. This study utilized video footage of food advertisements to evaluate the performance of
these technologies. Results showed that the constructed model using the aforementioned technologies
could reliably and accurately detect suspected non-compliant content in most scenarios, demonstrating
strong recognition performance. During testing, the YOLO model rapidly localized target regions,
while the OCR component extracted textual content from specific areas. The combination of these
two technologies reduced background interference and improved both computational efficiency and
recognition accuracy. This made the system especially suitable for complex or information-dense
visual environments. Additionally, by incorporating a lexicon constructed from publicly available food
advertising violation cases, relevant legal descriptions, and exaggerated promotional terms, the system
was able to effectively identify suspicious or non-compliant language, demonstrating strong adaptability
across various visual scenarios. This suggests its promising potential for applications in online monitoring
of suspected violations in both textual and video content. However, several limitations were observed in
this study. Recognition accuracy declined under extremely complex backgrounds or poor light intensity
conditions. The system also struggled to identify proper nouns and special fonts when dealing with fast-
moving objects or low-resolution images. In particular, images featuring highly creative or non-standard
typography affected recognition stability. Future development should focus on optimizing models to
enhance adaptability to special fonts and complex backgrounds, while also ensuring consistent input of
image quality. Overall, this study validates the feasibility of applying image recognition technology to
enhance the efficiency of video-based inspection processes. However, practical implementation must also
consider hardware computational requirements. It is recommended that high-performance hardware (e.g.,
GPUs) be deployed alongside further technical optimization to expand application scenarios and achieve
more efficient, accurate, and robust image recognition capabilities, meeting the demands of diverse

environments.
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