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Abstract

Induction of antioxidant proteins and phase 2 detoxifying enzymes that neutralize reactive electrophiles are important
mechanisms for protection against carcinogenesis. Normal cells provide multifaceted pathways to tightly control NF-E2-
related factor 2 (NRF2)-mediated gene expression in response to an assault by a range of endogenous and exogenous
oncogenic molecules. Transient activation of NRF2 by its activators is able to induce ARE-mediated cytoprotective
proteins which are essential for protection against various toxic and oxidative damages, and NRF2 activators thereby
have efficacy in cancer chemoprevention. Because NRF2 has a cytoprotective function, it can protect normal cells from
carcinogens like an angel, but when the protective effect acts on cancer cells, it will give rise to invincible cancer cells
and play a devilish role in tumor progression. Indeed, aberrant activation of NRF2 has been found in a variety of cancers
that create a favorable environment for the proliferation and survival of cancer cells and leads to drug resistance, ul-
timately leading to the poor clinical prognosis of patients. Therefore, pharmacological inhibition of NRF2 signaling has
emerged as a promising approach for cancer therapy. This review aims to compile the regulatory mechanisms of NRF2
and its double-edged role in cancer. In addition, we also summarize the research progress of NRF2 modulators, espe-
cially phytochemicals, in chemoprevention and cancer therapy.

Keywords: Cancer therapy, Chemoprevention, NRF2, Phytochemicals

1. Discovery of NRF2

N RF2 (Nuclear factor erythroid 2-related factor
2), also known as Nuclear Factor, Erythroid 2

Like 2 (NFE2L2), was discovered as a widely
expressed transcription factor belonging to the CNC
(cap 'n' collar)-basic leucine zipper family [1,2]. In
humans, NRF2 protein is composed of 605 amino
acids and is encoded by the NFE2L2 gene located at
chromosome region 2q31.2 (gene ID: 4780). As the
name implies, NRF2 was initially found to bind to
the tandem repeats of NF-E2/AP-1 binding
sequence ((c/t)gctga(g/c)tca(c/t)) in the promoter

region of the b-globin gene [1]. Later, NRF2 was
identified as a positive regulator of NAD(P)
H:quinone oxidoreductase1 (NQO1) gene induced
by antioxidants, such as b-naphthoflavone and tert-
butyl hydroquinone (t-BHQ) through antioxidant
response element (ARE; gcagtcacagtgactcagcagaatc)
[3]. NRF2 protein forms a heterodimer with small
muscle aponeurotic fibrosarcoma (small Maf) pro-
tein and directly induces the transcription of phase
II detoxifying enzymes through ARE binding [4].
NRF2 knockout did not affect mouse development
[5], however, NRF2-deficiency leads to increased
susceptibility to xenobiotic-induced toxicity due to
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the impairment of inducible expression of detoxi-
fying enzymes [6e8]. Afterward, the cytoprotective
role of NRF2-ARE pathway emerges by regulating
the expression of numerous antioxidant proteins
and detoxifying enzymes; all of which have been
intensively studied and confirmed [9,10].

2. Regulation of NRF2-ARE pathway

2.1. Ubiquitination and proteasomal degradation of
NRF2

NRF2-ARE pathway has been conclusively
deemed pivotal in cellular defense, especially in
warding off oxidative stress-induced cellular dam-
ages [11]. When cells confront stressful stimuli,
NRF2 is imported into the nucleus and hetero-
dimerizes with one of the small Maf proteins, and
induces expression of genes involved in detoxifica-
tion and antioxidant defense through directly
binding to ARE in the promoter region of genes
[12,13]. In 1999, Itoh et al. identified a novel cyto-
plasmic protein, KEAP1 (Kelch-like ECH-associated
protein1), which traps NRF2 in the cytoplasm and
suppressed transactivation activity of NRF2 through
directly interacting with the evolutionary conserved
N-terminal domain (Neh2) of NRF2 protein [14].
NRF2 has a short half-life (T1/2 ¼ 15 mine3 h)

[15,16], and the rapid turnover of NRF2 is due to
ubiquitin-mediated proteasome degradation. In
unstressed conditions, dimeric KEAP1 serves as a
substrate adaptor protein that interacts with the
Cullin3 (CUL3) ubiquitin ligase to form an active E3
ubiquitin ligase complex and triggers the degrada-
tion of NRF2 through ubiquitin-proteasome system
(UPS) [12,13]. The detailed mechanisms of KAEP1-
mediated inhibition of NRF2-ARE pathway have
been revealed in several studies via using different
experimental approaches [17e21].
When confronted with stressful conditions, reac-

tive cysteine residues within KEAP1 protein, which
functions as a sensor for stressful stimulus, become
modified, thereby resulting in KEAP1-NRF2 disas-
sociation due to a conformational change in dimeric
KEAP1 protein [12,13]. Subsequently, NRF2 is stabi-
lized and transported into the nucleus to drive
transcriptional activation of target genes through
binding to the ARE [12,13]. Therefore, upon directly
interrupting protein-protein interaction of NRF2-
KEAP1 complex via competitively binding to KEAP1
protein by sequestosome 1/p62 [22e24], dipeptidyl
peptidase 3 (DPP3) [25], prothymosin a (ProTa) [26],
Wilms tumor gene on X chromosome (WTX) [27],
partner and localizer of BRCA2 (PALB2) [28], tripar-
tite motif-containing protein 29 (TRIM29, ATDC)

[29], and cell-cycle related kinase 20 (CDK20) [30] or
binding to NRF2 protein by p21 (Cip1/Waf1) [31],
breast cancer susceptibility protein 1 (BRCA1) [32],
and progestin and adipoQ receptor family member 4
(PAQR4) [33] leads to facilitating stabilization, nu-
clear accumulation and transcriptional activation of
NRF2. Similarly, ubiquitin-processing proteases,
such as ubiquitin-specific-processing protease 11
(USP11) and deubiquitinating enzyme 3 (DUB3),
catalyze the removal of ubiquitin fromNRF2, thereby
stabilizing NRF2 protein [34,35].
In addition to the destabilization of NRF2 via

redox-sensitive interaction with KEAP1 and NRF2
Neh2 domain, the NRF2 Neh6 domain also pos-
sesses KEAP1-independent inhibitory activity on
NRF2 protein stability [36]. The serine-rich Neh6
domain of NRF2 is recognized by a substrate
receptor, b-transducin repeats-containing protein
(b-TrCP), of the SCF (SKP1-CUL1-F-box protein) E3
ubiquitin-protein ligase complex, resulting in
ubiquitin-proteasome degradation of NRF2 [37e39].
Furthermore, Neh6 degron-directed degradation of
NRF2 protein is enhanced by glycogen synthase
kinase-3b (GSK-3b)-dependent phosphorylation of
serine residues within the Neh6 domain [37e39].
Besides KEAP1 and b-TrCP, WD40 Repeat Protein
23 (WDR23) also served as a proteasome substrate
receptor for the recruitment of DDB1-CUL4-RBX1
E3 ubiquitin-protein ligase complex to induce the
degradation of NRF2 protein [40,41]. Furthermore,
ER-associated ubiquitin ligase Hrd1 [42,43], CR6-
interacting factor 1 (CRIF1) [43e45], IQ motif-con-
taining GTPase-activating protein 1 (IQGAP1)
[46,47], seven in absentia homolog 2 (Siah2) [48], and
UFM1-binding and PCI domain-containing protein
1 (UFBP1) [49] were also reported to down-regulated
NRF2-ARE pathway through inducing ubiquitina-
tion and proteasomal degradation of NRF2.

2.2. Post-translational modification of NRF2

2.2.1. Phosphorylation of NRF2
NRF2-ARE pathway is not only tightly controlled

by proteasomal degradation but also regulated by
post-translational modification of NRF2 protein
[50e52]. In 2000, Huang et al. first demonstrated that
activation of protein kinase C (PKC) had a decisive
role in inducing NRF2-ARE pathway-dependent
gene expression through the phosphorylation of
NRF2 protein, which leads to the NRF2 nuclear
translocation under antioxidant treatment [53].
Further investigation through utilizing site-directed
mutational analysis identified that Ser40 within
NRF2 Neh2 domain (KEAP1-interacting domain) is
the specific phosphorylation site catalyzed directly
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by PKC [54]. PKC-mediated phosphorylation of
NRF2 at Ser40 enhances KEAP1-NRF2 dissociation,
NRF2 stabilization, nuclear accumulation of NRF2,
and therefore induces ARE-dependent gene
expression [53e55].
Regulation of NRF2-ARE pathway by mitogen-

activated protein kinase (MAPK) signaling cascades
has been noticed [56e60]. Therefore, several studies
have explored and verified the possibility that
MAPKs directly phosphorylate NRF2 protein to
regulate the NRF2-ARE pathway [61e64]. Further-
more, a comparative analysis of amino acid se-
quences indicates that several conserved MAPK
phosphorylation sites (P-X-S/T-P, or S/T-P) within
NRF2 protein in humans and other species (chicken,
rat, and mouse) [61]. Moreover, five serine/threo-
nine residues (Ser215, Ser408, Ser558, Thr559, and
Ser577) have been identified in NRF2 protein that
can be directly phosphorylated by MAPKs [62].
Although the connections between MAPKs and

NRF2 activation and direct phosphorylation of NRF2
protein by MAPKs have been reported in numerous
studies, the effects of MAPK-dependent phosphor-
ylation of NRF2 on NRF2-ARE pathway are still
controversial. For instance, activation of p38 MAPK
has been shown to positively regulate NRF2-ARE
pathway via enhancing nuclear translocation and
transactivation activity of NRF2 [56,57,65]. On the
contrary, the increasing interaction between KEAP1
and NRF2, resulting in diminished transactivation
activity and nuclear translocation of NRF2 has been
observed when p38 MAPK is ectopically over-
expressed [63,66]. Likewise, the contradictory regu-
latory effects of other MAPKs, such as extracellular
signal-regulated kinase (ERK) and c-Jun N-terminal
kinase (JNK), on NRF2-ARE pathway have also been
observed [61,62,66,67]. The opposite effects of
MAPK-mediated regulation of NRF2-ARE pathway
may be related to the complexity of MAPKs
signaling pathways and reciprocal actions with
other signaling networks. Hence, the regulatory ef-
fects and specific mechanisms of MAPK signaling
cascades on NRF2 activity via direct phosphoryla-
tion requires further investigation.
Adenosine 50-monophosphate (AMP)-activated

protein kinase (AMPK) has been reported to
enhance the nuclear accumulation of NRF2 through
directly phosphorylating serine residue at position
558 within the nuclear export signal (NES) of NRF2
protein [68]. Others have found that three serine
residues (Ser374, Ser408, and Ser433) of NRF2 pro-
tein were hyper-phosphorylated by AMPK [69].
Unlike phosphorylation at Ser558 which involved in
nuclear accumulation of NRF2, substitutions of
Ser374, Ser408, and Ser433 by alanine had no

significant effects on protein stability, nuclear
import, and transactivation activity of NRF2 [69].
Additional protein kinases, like protein kinase

RNA-like endoplasmic reticulum kinase (PERK),
Fyn kinase, ceramide-protein kinase C zeta-casein
kinase 2 (CK2), and p35/Cdk5 kinase complex, have
been demonstrated to regulate NRF2-ARE pathway
through direct phosphorylation of NRF2 [70e77].
PERK directly phosphorylates NRF2 and leads to
the liberation of NRF2 from KEAP1 in response to
ER stress [70e72]. CK2 enhances NRF2 nuclear
translocation and transactivation activity directly by
phosphorylating several sites in the transcription
activation domains, Neh4 and Neh5, of NRF2
[73,74]. Similarly, activation of cyclin-dependent
kinase 5 (Cdk5)-p35 complexes catalyze the phos-
phorylation of Thr395, Ser433, and Thr439 in NRF2
protein [75]. The direct phosphorylation of NRF2 by
active Cdk5-p35 complex in the cytosol triggered
nuclear translocation of NRF2 and leads to the in-
duction of genes encoding enzymes involved in
glutathione metabolism that protected the cells
against oxidative damage [75]. On the contrary,
direct phosphorylation of Tyr576 within NRF2 Neh3
domain, which contains nuclear localization
sequence, by Fyn appears to suppress NRF2-ARE
pathway through inducing nuclear export of NRF2
[76,77].

2.2.2. Acetylation, SUMOylation, methylation, and
glycation of NRF2
In addition to phosphorylation, other forms of

post-translational modification of the NRF2 protein,
including acetylation, SUMOylation, and methyl-
ation, also contribute to the control of the NRF2-ARE
pathway. CREB binding protein (CBP)/p300-medi-
ated acetylated NRF2 protein at several specific
lysine residues, which are located in NRF2 Neh1
DNA-binding domain and Neh3 transactivation
domain containing a nuclear localization signal
(NLS) [78]. Acetylation of these lysine residues
enhanced nuclear retention and DNA-binding ac-
tivity of NRF2, consequently driving transcriptional
activation of ARE-mediated genes. Furthermore,
NRF2 acetylation also facilitated the association of
NRF2 and CBP, which functions as a transcriptional
co-activator [79]. Another post-translational modifi-
cation, SUMOylation, has been reported to positively
regulate NRF2-ARE pathway [80e83]. Increased
transcriptional activity of SUMOylated NRF2 has
been observed due to the enhancement of NRF2
protein stability, nuclear localization, and promoting
heterodimerization of NRF2 and MafG [80e83].
Conversely, SUMOylattion of NRF2 also serves as an
inhibitory regulation of NRF2 protein stability within
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the nucleus [84,85]. SUMO-modification of nuclear
NRF2 is ubiquitinated by poly-SUMO-specific E3
ubiquitin ligase, RING finger protein 4 (RNF4),
and to be degraded in the promyelocytic leukemia
nuclear bodies [84,85]. Arg437 in NRF2 protein is
methylated by arginine methyltransferase-1
(PRMT1), resulting in up-regulating DNA-binding
and gene transactivation activities of NRF2 [86]. In
addition, de-glycation of NRF2 protein by fructos-
amine-3-kinase (FN3K) increases its protein stability
and heterodimerization with small Maf proteins,
indicating that protein glycation is involved in
modulating NRF2 activity [87,88].

2.3. Regulation of the NRF2-ARE pathway by
interacting with transcriptional co-factors or other
proteins in the nucleus

Small Maf proteins, which contain basic region-
leucine zipper (bZIP) motif, are transcription coac-
tivators necessary for gearing up NRF2-mediated
activation of ARE-dependent gene transcription
[4,89,90]. NRF2 heterodimerizes with one of the
small Maf proteins (MafF, MafG, and MafK) via
Neh1 Cap'n'Collar (CNC)-bZIP domain within the
NRF2 protein, and then interacts with the ARE
sequences to trigger transcriptional activation
[89,91]. Other bZIP transcriptional regulatory fac-
tors, such as Jun family proteins (c-Jun, JunB, and
JunD) and activating transcription factor 4 (ATF4)
have also been shown to induce transcriptional
activation of NRF2 through direct interaction with
NRF2 [92,93]. Similarly, Jun dimerization protein 2
(JDP2) [94], p300/CBP [95], Brahma-related gene 1
(BRG1) [96], nuclear-restricted protein/brain (NRP/
B) [97], receptor-associated coactivator 3 (RAC3)
[98,99], mediator of RNA polymerase II transcription
subunit 16 (MED16) [100], p63 [101] and chromo-
domain helicase DNA binding protein 6 (CHD6)
[102] have been reported to function as transcrip-
tional coactivators, contributing to the enhancement
of NRF2-regulated transcriptional activity of the
ARE-driven genes in the nucleus. A recent study
found that NRF2 directly interacts with STAT3 di-
mers and enhances the transcription of interleukin
23A to promote breast cancer progression [103].
BTB domain and CNC Homolog 1 and 2 (BACH1

and BACH2) act as transcriptional repressors of
ARE-regulated genes by competing with NRF2 for
binding to the small Maf proteins [104e106].
Similarly, Replication Protein A1 (RPA1) has also
been shown to compete for the interaction between
NRF2 and small Maf proteins by forming NRF2-
RPA1 heterodimers that bind AREs and adjacent
7-nt negative regulatory sequence to down-regulate

MYLK transcription [107]. Homodimerization of
small Maf proteins acts as a negative regulator of the
NRF2-ARE pathway by competing for ARE binding
due to the scarcity of transcriptional activation
domains [89,91]. In addition, c-MYC [108], retinoid X
receptor alpha (RXRa) [109e111], retinoic acid re-
ceptor alpha (RARa) [112], estrogen-related receptor
beta (ERRb) [113], silencing mediator for retinoid
and thyroid hormone receptors (SMRT) [114],
p14ARF [115] and estrogen receptor a (ERa) [116]
are involved in the repression of NRF2-mediated
transcription by directly binding to NRF2. Further-
more, a controversial role for peroxisome
proliferator-activated receptor g (PPARg) in the
regulation of NRF2 activity has been reported.
Interaction with PPARg decreases the transcription
of the thromboxane synthase gene in rat macro-
phages [117], while the expression of heme oxy-
genase-1 (HO-1) is activated by NRF2-PPARg
complex in rat brain astrocytes [118]. Moreover,
truncated lamin A protein progerin is implicated in
Hutchinson-Gilford progeria syndrome (HGPS),
which impairs NRF2 transcriptional activity by
trapping NRF2 in the nuclear periphery, leading to
mislocalization of NRF2 in the nucleus and then
reducing access of NRF2 to ARE [86].

2.4. Transcriptional and translational regulation of
NRF2

Regulation of NRF2 gene expression at transcrip-
tional and post-transcriptional levels has been
extensively studied [9,51,119]. Besides NRF2 itself
[120,121], other transcription factors, AhR-ARNT
complex [122,123], human telomerase reverse tran-
scriptase (hTERT)-Y-Box binding protein 1 (YBX1)
[124], NF-kB [125,126], BRCA1 [127], myocyte
enhancer factor 2d (MEF2D) [128], Notch [129],
KRAS, BRAF and c-MYC [130] have been reported to
up-regulate the transcription of NRF2 gene. In
contrast, the tumor suppressor p53 represses the
promotor activity of NRF2 [131]. Epigenetic modifi-
cations (such as DNA methylation and histone
modifications) within the NRF2 promoter region and
post-transcriptional regulation by microRNAs have
also emerged as important regulatory mechanisms
for NRF2 expression [50,132e136]. Recently, direct
interactions between RNA-binding proteins (RBPs),
HuR and AUF1, and the 3-UTR of NRF2-mRNA have
been shown to activate the NRF2 pathway by
enhancing the maturation, nuclear export, and sta-
bility of NRF2 mRNA [137]. Furthermore, encoding
an NRF2 protein isoform without the KEAP1 inter-
action domain via alternative splicing is another
post-transcriptional regulation of NRF2 activity [138].
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Both 50- and 30- untranslated region (UTR) of
NRF2 mRNA transcript are involved in the regula-
tion of NRF2 protein translation. Under basal
conditions, translation of NRF2 protein is strongly
suppressed by Sg3 motif within the open reading
frame (ORF) of NRF2 mRNA 30-portion in a cap-
dependent process [139,140]. On the contrary,
50-UTR of NRF2 mRNA transcript contains two
regulatory elements, internal ribosomal entry site
(IRES) and G-quadruplex, which contribute to
inducing de novo NRF2 protein translation in
response to oxidative stress [141e144]. Small RNA
binding exonuclease protection factor La (La/SSB),
eukaryotic translation elongation factor 1 alpha 1
(EF1a), and the far upstream element binding pro-
tein 1 (FUBP1) are shown to play crucial regulatory
roles in oxidative stress-induced translation of NRF2
protein through facilitating the recruitment of the
translation machinery by interaction with NRF2
50-UTR [142,145].

3. NRF2 and cancer progression

3.1. NRF2 acts as a double-edged sword in cancer

NRF2 exhibits dual pro- and anti-tumorigenic
effects in cancer cells and normal cells, respectively
[10,146,147]. NRF2 activation is considered as a
protector during the initiation of carcinogenesis by
its protective effects on enzymatic detoxification and
elimination of chemical carcinogens and re-estab-
lishing cellular redox homeostasis in normal cells
[2,10,147,148]. Several in vivo studies demonstrated
that NRF2 deficiency enhances susceptibility to
carcinogen-induced tumorigenesis and results in a
more aggressive tumor phenotype in many types of
cancers [149e154]. In addition, activation of NRF2 in
hepatocytes by deletion of the KEAP1 gene attenu-
ates steatohepatitis-induced fibrosis and tumor
development, indicating that NRF2 plays an
important role in preventing inflammation-trig-
gered carcinogenesis [154,155].
However, NRF2-governed cytoprotective path-

ways endow transformed cells with biological capa-
bilities e the hallmarks of cancer e acquired during
malignant progression [10,156e160]. In 2017, an in
vivo study has demonstrated that activation of NRF2
before chemical carcinogen exposure suppresses
tumor development, whereas activation of NRF2
after tumor initiation facilitates the malignant pro-
gression of both chemically and genetically induced
tumors [148]. Before tumor initiation, inhibition of
NRF2 promotes cell proliferation and activation of
NRF2-induced apoptosis accompanied with the
generation of oxidative DNA damage in response to

carcinogen treatment [148]. Conversely, after
tumor development, suppression of NRF2 increases
apoptosis, alongwith higher oxidative DNA damage,
in both genetic and chemical-inducedmodels of lung
cancer inmice [148]. These studies have clarified that
NRF2-mediated antioxidant response exerts strik-
ingly opposite effects on determining whether cells
undergo apoptosis or proliferation during cancer
initiation and progression.

3.2. Mechanisms of NRF2 over-activation in cancer

Persistent NRF2 over-activation is frequently
observed in different types of cancer and is associ-
ated with poor clinical outcomes [10,161e167].
Somatic gain-of-function mutations of NRF2 gene
and somatic loss-of-function mutations of NRF2
repressors, KEAP1, and CUL3 genes, are common
genetic mechanisms underlying over-activation of
NRF2 pathway in cancer cells [156,168e171] (Fig. 1).
Genome-scale analysis, covering gene expression
levels from RNA sequencing, somatic mutations
from whole-exome sequencing, DNA copy-number
variation, and DNA methylation, of nearly 9000
samples on 33 cancer types from the entire collec-
tion of TCGA PanCancer Atlas revealed that 6 types
of cancer exhibited higher (greater than 10%) fre-
quency of alterations in NRF2 pathway, including
lung squamous cell carcinoma (LUSC) (25%
altered), esophagogastric squamous cell carcinoma
(STES ESCC) (23% altered), uterine corpus endo-
metrial carcinoma with microsatellite instability and
polymerase e (UCEC MSI-POLE) (19% altered),
lung adenocarcinoma (LUAD) (15% altered), head-
neck squamous cell carcinoma (HNSC) (HPV-) (13%
altered), and cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC) (10% altered)
[171]. The gain-of-function mutations of the NRF2
gene are predominantly detected in the ETGE and
DLG motifs within the Neh2 domain, which is
required for NRF2-KEAP1 protein-protein interac-
tion [168,170,172,173]. Furthermore, constitutively
active forms of NRF2 protein, which are encoded by
the truncated transcripts lacking exon 2 or exon 2/3,
have been found in lung and head-neck squamous
cell carcinoma [138,174]. These aberrant NRF2 pro-
tein isoforms lacking the Neh2 domain would cause
the stabilization and persistent nuclear localization
of NRF2 by preventing KEAP1-mediated proteolysis
[138,174]. In contrast to NRF2, the loss-of-function
mutations of KEAP1 gene are found throughout the
entire gene [168,172,175]. Most inactivating muta-
tions of the KEAP1 and CUL3 result in impairing
NRF2 degradation and contribute to constitutive
NRF2 activation in cancer cells [168,175e177].
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As mentioned in Section 1-2, the cellular abun-
dance and activity of NRF2 are rigorously controlled
at the transcriptional, post-transcriptional, trans-
lational, and post-translational levels. Therefore, in
addition to the genetic deregulation of NRF2 and
KAEP1, aberrations in these regulatory mechanisms
also play crucial roles in the constitutive activation of
NRF2 in cancer cells [52,134,146,175,178] (Fig. 1). For
instance, NRF2 gene transcription can be up-regu-
lated by oncogenic transcription factors, such as c-
MYC, KRAS, BRAF, and NF-kB [125,126,130,159,179].
In cancer cells, NRF2 mRNA level can also be regu-
lated by several miRNAs [168], such as miR-28 [180],
miR-144 [181], and miR-153 [182]. The reduction of
thesemicroRNAs leads to an increase inNRF2 levels.
In addition to up-regulation of NRF2 expression,
impairment of KEAP1-mediated NRF2 degradation
due to the reduction of KEAP1 expression
(through DNA methylation, miRNA-mediated gene
regulation) and suppression of NRF2-KEAP1 inter-
action (through modification of KEAP1 protein,
competing directly for NRF2-KEAP1 interaction) is
an important regulatory mechanism which involves
in sustained over-activation of NRF2 in cancer cells
[146,168,175,183,184]. Furthermore, activation of
oncogenic signaling pathways, such as EGFR, PI3K/

AKT, andMAPK signaling pathway, also contributes
to the enhancement of the NRF2-ARE pathway
[171,185e187].

3.3. NRF2 and cancer metabolic reprogramming

3.3.1. NRF2 and Warburg effect
Metabolic reprogramming is widely considered as

one of the hallmarks of cancer, which not only
provides cancer cells themselves with advantages
for survival and proliferation but also helps create a
favorable microenvironment that facilitates metas-
tasis during cancer progression [188,189]. In 1956,
Otto Warburg discovered that, unlike normal cells
generating energy by oxidative phosphorylation in
mitochondria, cancer cells mainly tend to produce
ATP through the aerobic glycolysis pathway despite
oxygen availability [190]. This metabolic adaptation
supplies cancer cells with a higher rate of ATP
generation enhances the carbons from glucose
feeding into biosynthetic pathways, provides an
advantageous microenvironment for cancer cells
proliferation and metastasis as well as directly
manipulates signal transductions through reactive
oxidative stress (ROS) or chromatin modulation
[191]. In addition to the changes in glucose

Fig. 1. Schematic illustration depicts mechanisms causing the NRF2 over-activation in cancer cells.
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metabolism, accumulating evidence verified that
dysregulation of lipid and amino acid metabolism
are also involved in the enhancement of malignant
progression [192,193]. Abnormalities in proto-onco-
genes or tumor suppressor genes directly drive the
metabolic rewiring in cancer cells [194,195].
Besides the transactivation of genes involved in

the maintenance of cellular redox homeostasis,
increasing evidence emerges that NRF2 pleiotropi-
cally modulates cancer cell metabolism [196,197].
Over-activation of NRF2 has been reported to pro-
mote the Warburg effect in cancer cells [10,198].
NRF2 enhanced glucose uptake, induced transcrip-
tional up-regulation of genes encoding glycolytic
enzymes, such as HK2, PFKFB3, GAPDH, PGK1, and
ENO1/2, and then reduced the entry of glycolysis-
derived pyruvate into the TCA cycle through
induction of LDHA and PDK1 [198e200]. In addition
to central carbon metabolism, NRF2 regulates
numerous metabolic processes, including amino
acid metabolism, lipid metabolism, and iron/heme
metabolism, that enhance cellular plasticity of cancer
cells to enable malignant progression [197] (Fig. 2).

3.3.2. NRF2 plays a pivotal role in the satisfaction of
NADPH demand in cancer cells
Maintaining the optimal balance of redox status is

a crucial requisite within the cells of living
organisms. Compared with normal cells, cancer
cells commonly encounter greater oxidative stress in
virtue of environmental stress as well as the up-
regulation of growth signals, metabolic activity,
mitochondrial function, and integrin activation
[201]. A large part of NRF2-regulated metabolic
pathways, such as NADPH generation, glutathione
synthesis, and cysteine metabolism, is hijacked by
cancer cells to cope with excessive ROS production
to adapt and survive under such stressful condi-
tions [196]. NRF2 directly regulated major cytosolic
NADPH-producing enzymes, two of the pentose
phosphate pathway (glucose-6-phosphate dehy-
drogenase (G6PD), 6-phosphogluconate dehydro-
genase (PGD)), one of TCA cycle (isocitrate
dehydrogenase 1 (IDH1), and one is a link between
glycolysis and citric acid cycle (malic enzyme 1
(ME1)) [202,203]. Furthermore, a mitochondrial
enzyme, methylenetetrahydrofolate dehydrogenase
2 (MTHFD2), involved in mitochondrial NADPH
production is also regulated by NRF2 [202,204].
Conversely, pyruvate kinase, a key glycolytic
enzyme that controls glucose carbon toward oxida-
tive phosphorylation or pentose phosphate
pathway, is negatively regulated by NRF2 [205].
Suppression of pyruvate kinase promoted the influx
of glucose into the pentose phosphate pathway,

thereby increasing NADPH production through
G6PD and PGD [206].
De novo fatty acid synthesis is one of the most

NADPH-consuming metabolic processes in the cells
[207,208]. Genetic (KEAP1 knockout) and chemical
activation of NRF2 in vivo reduce the genes encoding
the key enzymes for de novo lipogenesis, like ATP-
citrate lyase (ACLY), Acetyl-CoA carboxylase 1
(ACC1), fatty acid synthase (FASN), fatty acid desa-
turases (FADS), fatty acid elongases (ELOVL), and
stearoyl CoA desaturase (SCD1) [205]. This evidence
has indicated that NRF2 increases the intracellular
NADPH pool not only through induction of NADPH-
generating enzymes and enforced carbon-flux to-
ward NADPH generation but also suppressed
NADPH-consuming metabolic pathway. Up-regula-
tion of the de novo fatty acid biosynthetic pathway is a
common metabolic feature of cancer cells [207,208],
however, the exact role of NRF2-regulated de novo
fatty acid biosynthesis in tumor progression remains
uncertain and requires systematic investigations.

3.3.3. NRF2 and fatty acid oxidation
Unlike suppression of de novo fatty acid biosyn-

thesis, several in vivo studies have demonstrated that
NRF2 enhances fatty acid oxidation (FAO) via up-
regulation of FAO-related enzymes expression, such
as carnitine palmitoyltransferase (CPT1/2) and acyl-
CoA oxidase (ACOX1/2) [196,209,210]. Further,
peroxisome proliferator-activated receptor d (PPARd),
a transcription factor with key roles in regulating the
expression of several genes encoding main enzymes
involved in fatty acid oxidation and cholesterol
metabolism, is upregulated by the constitutively-
active mutant form of NRF2 (NRF2 E79Q) in the hy-
perplastic mouse squamous epithelial cells [211]. In
addition to inducing the expression of FAO-related
genes,NRF2has been verified to enhance lipid uptake
through activation of cluster of differentiation 36
(CD36), a fatty acid translocase in macrophages
[212,213] and hepatocellular carcinoma (Huh-7) cells
[214]. Although CD36-dependent lipid metabolism
exhibits a tumor-promoting role in cancer cells [215],
the dual effects of NRF2 in CD36-mediated enhance-
ment of tumor progression are still unclear. Accord-
ingly, even though the role of NRF2 in fatty acid
metabolismhas been identified, further investigations
are needed to clarify the influences of NRF2-directed
lipid metabolism on malignant progression.

3.3.4. NRF2 and amino acid metabolism
In addition to increasing intracellular NADPH

amount, NRF2-mediated activation of thioredoxin
(Trx) and glutathione (GSH) systems is the principal
mechanism for coping with ROS overproduction in
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cancer cells [216]. NRF2 enhances de novo synthesis
of glutathione from glutamate, cysteine, and glycine
via inductions in the expression of glutamate-
cysteine ligase modifier subunit (GCLM), the
glutamate-cysteine ligase catalytic subunit (GCLC),
and glutathione synthetase (GSS) [217]. NRF2 pro-
motes transcriptional upregulations of the cystine/
glutamate antiporter, SLC7A11 (xCT), to enhance
cystine uptake [218] as well as glutathione reductase
(GR) and glutathione peroxidase (GPx) to facilitate
glutathione recycling [9]. Furthermore, NRF2 also
up-regulates the expression of genes encoding en-
zymes involved in the thioredoxin systems to
increase the reduction of cystine to cysteine [219].
Glutamine, a conditionally essential amino acid, is

an important amino acid with pleiotropic functions
for tumor progression [220]. Glutaminolysis, a
metabolic process composed of several steps for
catalyzing glutamine, has been considered as one of
the hallmarks of cancer metabolism [220] and a
potential therapeutic target for cancer therapy [221].
Persistent activation of NRF2 enhanced the de-
pendency of cancer cells on glutaminolysis and

thereby resulted in sensitizing tumors to gluta-
minase inhibition [222,223]. A significantly higher
requirement for exogenous glutamine has been
observed in the NSCLC cells with loss-of-function
mutations in KEAP1 than in the KEAP1-wild-type
NSCLC cells [224]. The enhanced dependency of
exogenous glutamine in NRF2-hyperactive cancer
cells is due to the decreased intracellular glutamate
pools induced by the induction of glutathione syn-
thesis and glutamate excretion via cystine/gluta-
mate antiporter [224]. NRF2 facilities glutaminolysis
through transcriptional activation of the enzymes
involved in glutamine uptake (solute carrier family 1
member 5 (SLC1A5) [222]), hydrolysis of glutamine
forming glutamate (glutaminase 2 (GLS2) [225]), and
reversible transamination between alanine and
2-oxoglutarate to form pyruvate and glutamate
(glutamic-pyruvic transaminase 2 (GPT2) [225]).
Enhanced glutaminolysis not only provides gluta-
mate for increased glutathione biosynthesis but
also fuels the TCA cycle through replenishing in-
termediates from glutamine [222,224], and promotes
the synthesis of nonessential amino acids through

Fig. 2. Schematic illustration depicts mechanisms of actions of NRF2 on cancer metabolic reprogramming.
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aminotransferases in cancer cells [220]. Further-
more, up-regulation of glutaminolysis also fulfills
the needs of de novo nucleic acid and lipid biosyn-
thesis in cancer cells [202,226].
Asparagine and aspartate play important roles in

the maintenance of cancer cell proliferation, and
survival under stress conditions, such as nutrient-
limiting conditions (especially glucose and gluta-
mine deprivation), ETC dysfunction and hypoxia
[227e230]. Decreasing the bioavailability of aspara-
gine through knockdown of asparagine synthetase
(ASNS) reduces the transcription of EMT-related
genes and metastasis of breast cancer cells, indi-
cating that asparagine bioavailability may be an
important regulatory mechanism in cancer metas-
tasis [231]. Asparagine synthetase (ASNS) catalyzes
the synthesis of the asparagine from aspartate and
glutamine that require ATP hydrolysis [232].
The expression of ASNA is induced by activating
transcription factor 4 (ATF4), thereby maintaining
intracellular asparagine levels in response to
nutrient-limiting conditions [227,233]. NRF2 pro-
moted ATF4-regulated ASNS expression induced
by activating PI3K-AKT pathway during glutamine
deprivation in a KRASG12D-driven mouse lung
cancer model [234]. Thus, asparagine biosynthesis
was enhanced and then glutamine deprivation-
induced apoptosis was suppressed. In addition,
NRF2 may transactivated ATF4 gene expression
through direct binding to its promoter, thus allow-
ing amplification of ATF4-driven ASNS expression
to contribute to the development of esophageal
squamous cell carcinoma (ESCC) under glucose-
deprived conditions [227].
Besides regulation of de novo asparagine synthesis

via ATF4, NRF2 has also been reported to
increase serine/glycine biosynthesis from glucose
through enhancing ATF4-mediated phosphoglyc-
erate dehydrogenase (PHGDH), phosphoserine
aminotransferase 1 (PSAT1), and serine hydrox-
ymethyltransferase 2 (SHMT2) expressions in
NSCLC cells [235]. Activation of serine/glycine
biosynthesis pathway replenishes carbons from
glycolysis to fuel GSH, nucleotides, and NADPH
synthesis and then promoted lung cancer progres-
sion [235]. Serine biosynthesis is dependent on
GLUT8 (SLC2A8)-mediated glucose uptake in the
KRAS-mutant KEAP1 deficient NSCLC cell lines,
indicating that glucose availability played an
important role in NRF2-mediated serine biosyn-
thesis in lung cancer [236]. In addition to NSCLC,
NRF2 is also involved in the regulation of de novo
serine synthesis in hepatocellular carcinoma (HCC)
[80]. Under serine-deprived conditions, an
increased SUMOylation of NRF2 enhances de novo

serine synthesis through up-regulating the trans-
lation of the first rate-limiting enzyme, PHGDH, of
the pathway, contributing to the maintenance of
HCC. This enhancement of serine biosynthesis by
NRF2 SUMOylation is partly dependent on the
intracellular ROS level in HCC.

3.3.5. NRF2 and de novo nucleotide synthesis
Over-activation of NRF2 empowers de novo nucle-

otide synthesis to satisfy the constant demands of
rapid proliferation in cancer cells through metabolic
network rewiring to provide building blocks for
fueling nucleotide synthesis and transactivation of
the genes that encode for nucleotide synthesis
enzymes [196,202,235]. For instance, increased ac-
tivity of the pentose phosphate pathway caused by
constitutive activation of NRF2 promoted nucleotide
synthesis by raising the availabilities of the sugar
backbone of the nucleotide (ribose 5-phosphate
(R5P)) [179,196,206]. Up-regulation of intracellular
NADPH level by NRF2 provides advantages for de-
oxyribonucleotides synthesis via supporting the
enzymatic reaction of ribonucleotide reductase [196].
Furthermore, NRF2 directly transactivates the
expression of phosphoribosyl pyrophosphate ami-
dotransferase (PPAT), an important rate-limiting
enzyme for the de novo nucleotide biosynthetic
pathway [202,237]. Up-regulation of the expression
of methylenetetrahydrofolate dehydrogenase 2
(MTHFD2), a mitochondrial enzyme involved in
folate-mediated one-carbon metabolism, by NRF2
also promotes de novo synthesis of purine in cancer
cells [202,237]. Another mitochondrial enzyme,
methylenetetrahydrofolate dehydrogenase 1-like
(MTHFD1L), which is downstream of MTHFD2 in
the mitochondrial folate cycle, is also found to be
directly regulated by NRF2 in HCC [238,239]. In
addition, oxidative pentose phosphate pathway
(oxPPP)-generated NADPH plays a critical role in
supporting folate metabolism by regulation of dihy-
drofolate reductase (DHFR) activity, indicating that
NRF2 promotes folate-mediated one-carbon meta-
bolism to support de novo nucleotide synthesis not
only directly through transactivation of MTHFD2
and MTHFD1L gene expressions but also indirectly
through up-regulation of PPP [240].

3.3.6. NRF2 and iron/heme metabolism
The role of NRF2 in iron/heme metabolism has

been well established [241]. NRF2 controls the
intracellular iron homeostasis through regulating
the expression of genes involved in heme biosyn-
thesis (ferrochelatase (FECH) [242]), heme catabo-
lism (heme oxygenase (HMOX-1) [243], biliverdin
reductase A/B (BLVR A/B) [244]), heme/iron
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transport (ATP binding cassette subfamily B mem-
ber 6 (ABCB6) [245], transferrin receptor-1 (TFR1),
ferroportin-1 (FPN1) [246]), and heme transporter
(HRG1) [242]) and intracellular iron storage (ferritin
heavy chain 1 (FTH1) and ferritin light chain [247]).
Ferroptosis is iron-dependent programmed necro-
sis, which is induced by ferrous iron (Fe2þ)-medi-
ated lipid peroxidation [248]. Recently, triggering
ferroptosis is considered as a novel therapeutic
strategy in cancer treatment [249]. Owing to the
regulatory role in iron/heme metabolism and ROS
detoxification, NRF2 functions as the protector of
cancer cells against ferroptosis [250]. Notably, the
activity of glutathione peroxidase 4 (GPX4), the
gatekeeper for ferroptosis, is directly or indirectly
up-regulated by NRF2 [250]. Another ferroptosis-
inhibiting protein, cystine/glutamate antiporter,
SLC7A11 (xCT), which maintains intracellular
cysteine availability for glutathione production, is
also induced by NRF2 activation [250]. Therefore,
inducing ferroptosis via inhibition of NRF2 has been
viewed as a potential therapeutic strategy for the
treatment of cancer, especially for re-sensitization of
treatment-resistant cancer cells [251].

4. Chemopreventive effects and therapeutic
potentials of NRF2 modulators

4.1. Applications of NRF2 activators in cancer
chemoprevention

One of the most prominent strategies in cancer
chemoprevention is to protect cells or tissues from
various carcinogens and carcinogenic metabolites,
both exogenous and endogenous, by inducing
detoxifying enzymes and antioxidant proteins.
NRF2 plays an important role in preventing carci-
nogenesis through antioxidant response element
(ARE)-mediated transcriptional activation of several
detoxifying and antioxidant enzymes [120,252,253].
The exploration of phytochemicals and food con-
stituents which exerted chemopreventive potential
via the elimination of electrophile-induced carcino-
genesis by Nrf2-driven antioxidants and detoxifying
proteins are hot areas in cancer prevention research
[252e256].
In order to discover more novel NRF2 modulators,

we have established a cell-based NRF2/ARE-driven
luciferase reporter system that can efficiently and
accurately screen large compound libraries [257].
This platform has helped us to successfully develop
many NRF2 activators [257e263]. Among them, we
first identified 4-ketopinoresinol as a novel NRF2
activator. 4-Ketopinoresinol was isolated from adlay
and exhibited a potent cytoprotective effect against

oxidative stress-induced cell injury through activa-
tion of PI3K/AKT/NRF2/HO-1 axis [257]. In addition
to 4-Ketopinoresinol, several phytochemicals iso-
lated from adlay, such as trans-coniferylaldehyde
and sinapaldehyde, were also identified to possess
free-radical scavenging and antimutagenic activities
by inducing NRF2/ARE pathway [259]. We noticed
that trans-coniferylaldehyde increased the level of
Nrf2-mediated detoxifying/antioxidant proteins in
vitro and in vivo, and attenuated carcinogen-induced
oxidative stress by activating Nrf2 via p38a/
MAPKAPK-2- and PK-N3-dependent signaling
pathways [260]. Adlay has been recognized as a
chemopreventive blocking and suppressing agent
against carcinogenesis [261]. Enhancement of NRF2-
mediated antioxidant and detoxifying enzyme
induction is one of the important mechanisms
underlying the cancer chemopreventive effects of
adlay [261].
By exploiting the NRF2/ARE-driven luciferase re-

porter system, we also noted that resveratrol, hydro-
quinone, ethyl ferulate, tert-Butylhydroquinone,
apigenin, piceatannol, ebselen, curcumin, n-octyl
caffeate, carnosic acid, tanshinone IIA, and bis-
demethoxycurcumin possessed significant abilities to
induceNRF2/ARE-driven luciferase activities [263]. In
fact, some of the several phytochemicals mentioned
above are known NRF2 activators and potent cancer
chemopreventive agents, such as resveratrol, picea-
tannol, pterostilbene, curcumin, and bis-demethox-
ycurcumin. Resveratrol and its hydroxyl derivative
piceatannol exert significant cancer preventive ben-
efits through activation of NRF2 and NRF2-mediated
cellular defense system [264,265]. A natural
methoxylated analog of resveratrol, pterostilbene has
been found to be more effective than resveratrol in
reducing chemically induced mouse colon carcino-
genesis by induction of NRF2/ARE pathway [266].
Furthermore, pterostilbene also effectually prevents
chemical-induced skin and lung tumorigenesis
[267,268]. Curcumin and its analogues such as bis-
demethoxycurcumin possess chemopreventive
ability through activation of NRF2 [269e273]. In
addition, other natural polyphenolic compounds,
such as apigenin and carnosic acid, activate NRF2-
mediated antioxidant signaling thereby providing
significant cancer preventive benefits [274e277].
Although some of the NRF2 activators identified

from our study [263] are not directly linked to the
chemopreventive capability of cancer, however,
their ability to induce NRF2-mediated protection
against oxidative stress and inflammation has
been reported in previous studies. For example,
tanshinone IIA, a lipophilic diterpene isolated from
the root of Salvia miltiorrhiza Bunge (Lamiaceae),
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exerts renal- and neuron-protective actions and
anti-fibrotic effects in the silica-induced lung
fibrosis model via increasing the induction of NRF2
[278,279]. The n-Octyl caffeate facilitates NRF2-
mediated cytoprotection through increasing nuclear
accumulation of NRF2, thus proving the multiple
countervailing effects of oxidative hepatotoxicity
[280]. Ebselen effectively protects auditory and
retinal Müller cells against oxidative damages by
eliciting activation of NRF2 pathway [281,282].
Although ebselen has cancer chemopreventive ac-
tivity in inflammation-related carcinogenesis, there
is no evidence that this is related to NRF2 activation
[283]. Ethyl ferulate, a naturally lipophilic poly-
phenol, guards against inflammation-induced acute
lung injury and renal damage caused by hypergly-
cemia-induced oxidative stress through NRF2 acti-
vation [284,285]. Ethyl ferulate has been reported to
be a chemopreventive agent through targeting the
mTOR signaling pathway [286].
Based on the above discussion, we believe that our

screening platform is efficient and accurate. It
accurately presented consistent results to validate
NRF2 activators identified by others, and has also
helped us to discover many novel and potent NRF2
activators. The role of some above-mentioned NRF2
activators in NRF2-mediated cancer chemopreven-
tion has been validated, but more studies are still
needed to elucidate other phytochemicals that have
not been systematically studied in NRF2-mediated
cancer chemoprevention.

4.2. Applications of NRF2 inhibitors in cancer
therapy

Several lines of evidence have demonstrated that
elevated NRF2 activity is strongly correlated with
tumor progression. Cancer cells acquire resistance
by producing high levels of detoxifying enzymes
that destroy chemotherapy drugs, pumping
chemotherapy drugs out by efflux pumps, or by
producing antioxidants that protect cells from
oxidative damage caused by certain chemotherapy
drugs. Our previous studies demonstrated that
activation of NRF2-ARE pathway is critical for the
development of chemoresistance of tumor cells
[159,160,263]. Considering the role of Nrf2 in regu-
lating a battery of genes that act to detoxify anti-
cancer drugs and/or attenuate drug-induced oxida-
tive stress or induced drug efflux, it is noted that
Nrf2/ARE pathway plays an important role in can-
cer etiology and developing the chemoresistance in
the clinical setting [287,288].
The diversity of changes in metabolic programs

within the cancer cells can determine how

proliferative rewiring is driven. Therefore, cancer
cells must rewire cellular metabolism to meet the
demands of growth and proliferation, and cancer
metabolism has long been considered a hallmark of
cancer [289]. Recent studies have identified novel
functions of NRF2 in cancer metabolic reprogram-
ming [10], and has been explored and confirmed in
different studies (Please refer Section 3-3. NRF2 and
cancer metabolic reprogramming). Recently, we
revealed that carcinogens, such as nicotine and
arecoline, trigger c-MYC-directedNRF2 activation in
head and neck cancer. Over-activation of NRF2
promotes malignant progression of HNSCC through
reprogramming a wide range of cancer metabolic
pathways, including pentose phosphate pathway
(PPP), valine leucine and isoleucine degradation,
pyrimidine metabolism, glycolysis and gluconeo-
genesis, purine metabolism, oxidative phosphoryla-
tion, xenobiotic metabolism, heme metabolism, fatty
acidmetabolism, and adipogenesis, in head and neck
cancer. Targeting NRF2-directed cellular meta-
bolism could be an effective strategy for the devel-
opment of novel treatments for head and neck cancer
[179].
There are no clinically available inhibitors of NRF2

in cancer therapy. Generally, except for the ligand-
inducible nuclear receptors, directly modulating the
activities of transcription factors remains extremely
challenging [290]. Therefore, similar to most tran-
scription factors, the development of NRF2 inhibitors,
which directly and specifically targeting of NRF2 it-
self, is a tremendous obstacle for researchers. Several
natural compounds have been reported to exert their
tumor-suppressive functions through inhibition of
NRF2 activity. Notably, procyanidins isolated from
cinnamomi cortex promoted nuclear degradation of
NRF2 through insulin-like growth factor-1 receptor-
induced activation of cysteine proteases in lung can-
cer cells resulting in inhibition of cell proliferation and
increased doxorubicin- and etoposide-induced cyto-
toxicity [291e293]. Convallatoxin, derived fromAdonis
amurensis Regel et Radde, enhances GSK-3b/b-TrCP-
mediated NRF2 degradation, thereby contributing to
the enhancement of 5-fluorouracil cytotoxicity [294].
Hinokitiol (b-Thujaplicin), isolated from Chymacy-
paris obtuse, has been demonstrated to attenuate self-
renewal and invasiveness of glioblastoma stem cells
by reducing both mRNA and protein expression of
NRF2 [295]. Brusatol and halofuginone, which can
enhance cancer cell sensitivity to chemotherapeutic
agents, have been demonstrated to act as NRF2
inhibitors through reducing NRF2 protein levels
[296,297]. Furthermore, some natural compounds
play ambiguous roles in the regulation of NRF2 ac-
tivity. For example, luteolin was shown to induce
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apoptosis in colorectal cancer cells by reducing nu-
clear localization of NRF2 [298]; and to increase NRF2
mRNA expression by reducing themethylation status
of the NRF2 promoter [299]. Furthermore, Dolastatin
12, a marine natural product isolated from marine
cyanobacteria, inhibits ARE-mediated reporter gene
activity and exhibits potent inhibition of the NRF2/
NQO1 axis in cancer cells [300].
Recently, drug repurposing is considered an

emerging strategy to identify NRF2 inhibitors for the
effective treatment of cancer. For example, all-trans
retinoic acid (ATRA), currently used to treat acute
promyelocytic leukemia (APL) and dermatologic
diseases, has been found to block nuclear trans-
location of NRF2, enhance NRF2 degradation, and
suppress NRF2 recruitment to ARE, resulting to
reduce expression of NRF2/ARE-driven genes and
diminish stem cell characteristics of ALDHhigh

ovarian cancer [112,301]. Clobetasol propionate, a
corticosteroid used in the treatment of inflammatory
skin diseases, inhibits the NRF2 pathway by trig-
gering GSK3/b-TrCP-mediated degradation of
NRF2, contributing to inhibiting growth of NRF2-
overactive lung cancer cells [302]. Isoniazid, a
tuberculosis drug, has been shown to prevent nu-
clear translocation of NRF2 via reducing karyopherin
b1-mediated nuclear import of NRF2 [303] and

ERK1-dependent NRF2 phosphorylation [304] in
human hepatoma cells.
To identify specific inhibitors that could directly

target NRF2, several research groups have performed
screening tests to identify active compounds using
ARE-driven cell-based reporter assays from small
molecule compound libraries [300,305e307]. 4-(2-
Cyclohexylethoxy)aniline (IM3829) has been discov-
ered to have a significant inhibitory effect on the
NRF2/ARE pathway and can be used as an effective
lung cancer radiosensitizer [307]. Later, thienopyr-
imidine-containing compound ARE Expression
Modulator 1 (AEM1) is found to inhibit ARE-driven
luciferase activity, NRF2-regulated gene expression,
and has the ability to reduce tumor growth and in-
crease chemosensitivity in lung cancer cells [305].
Furthermore, small molecule ML385 has been
discovered to directly target NRF2 itself by binding to
Neh1 domain, which is involved in heterodimeriza-
tion with small Maf proteins and DNA binding [306].
ML385 inhibits the binding of the NRF2/small Maf
complex to ARE, causing repression of NRF2-regu-
lated gene expression, thereby sensitizing KEAP1-
mutant NSCLC cells to chemotoxicity.
Over the past few decades, several studies have

been done to identify potential inhibitors of NRF2;
not surprisingly, a number of compounds have been

Fig. 3. Representative naturally occurring NRF2 activators and inhibitors.
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shown to exhibit anti-NRF2 activity through
reducing its intracellular content, impairing nuclear
localization, blocking NRF2 binding to its co-
operators, and interrupting DNA binding activity
[308,309]. To date, NRF2 inhibitors that have been
reported so far lack specificity and selectivity, which
poses a major limitation for subsequent clinical
application. By utilizing a cell-based ARE reporter
gene system, we have screened a small-molecule
compound library and discovered that HBED,
hinokitiol, U83836E, GERIBP002A, CDC, and
gossypol are potential NRF2 inhibitors [263]. Among
them, gossypol displayed the highest ARE-driven
luciferase inhibitory activity, and the second most
potent compound was hinokitiol. Hinokitiol is a
known NRF2 inhibitor [295]. Notably, HBED,
U83836E, GERIBP002A, CDC, and gossypol have
never been reported to have NRF2 inhibitory ac-
tivity before, and this role was elucidated for the
first time by our group [263]. This novel NRF2
inhibitor, gossypol, has been demonstrated to
enhance the therapeutic effects of etoposide and
cisplatin in chemo-resistant cancer cells by inhibit-
ing the NRF2/MRP1 and NRF2/G6PD axis, respec-
tively. These results suggest that gossypol has a high
potential to improve clinical efficacy in chemo-re-
fractory tumors by blocking NRF2 signaling to
overcome drug pumping and reprogram cancer
metabolism [263].
Based on the above discussion, one can find many

NRF2 activators are natural products and belong to
dietary phytochemicals. However, naturally occur-
ring NRF2 inhibitors are mostly isolated from
inedible plants or microorganisms (Fig. 3). These
results reflect the recognized role of phytochemicals
in edible foods that helps us build good antioxidant
and detoxification defenses and support the use of
NRF2 activators for chemoprevention. Conversely,
NRF2 inhibitors are mostly found in non-edible
plants, which indicates their use is not for daily
health care, but rather as a strategy for treatment or
adjuvant treatment of diseases, such as cancer.

5. Conclusion

As NRF2 acts as a double-edged sword in cancer,
it protects normal cells from the initiation of carci-
nogenesis induced by carcinogens, but it may also
prompt the cancer cells to become aggressive and
resistant to treatment. Therefore, the use of NRF2
activators or inhibitors in the correct and precise
context is critical to the success of cancer prevention
or treatment. For example, supplementation of a
large amount of antioxidants with NRF2-activating
capacity during the treatment phase may raise

concerns about the diminished efficacy of chemo-
and radiotherapy. It must be noted that NRF2 plays
an important regulatory role in cancer metabolic
reprogramming, in addition to activating detoxi-
fying enzymes, antioxidant proteins, and drug efflux
transporters. Reprogramming metabolic pathways
in cancer cells is critical for increasing energy
production and supporting the biosynthesis of pre-
cursors required for tumor progression. In the
future, it is worth exploring the mechanism of action
of NRF2 inhibitors to achieve therapeutic effects by
reprogramming tumor metabolism.
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