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Abstract

Turmeric (Curcuma longa L.) is a medicinal plant used extensively in Chinese and Indian traditional medicine as a
home remedy for various diseases. It has been used for medical purposes for centuries. Today, turmeric has become one
of the most popular medicinal herbs, spices, and functional supplements worldwide. Curcuminoids are linear diary-
lheptanoids from the rhizomes that include curcumin and two related compounds: demethoxycurcumin and bisdeme-
thoxycurcumin, which are the active components of the C. longa plant, play a crucial role in numerous functions. This
review summarises the composition of turmeric and the properties of curcumin regarding its antioxidant, anti-inflam-
matory, anti-diabetic, anti-colorectal cancer, and other physiological activity. In addition, the dilemma of the application
of curcumin due to its low water solubility and bioavailability was discussed. Finally, this article provides three novel
application strategies based on previous studies: using curcumin analogues and related substances, gut microbiota
regulation, and using curcumin-loaded exosome vesicles and turmeric-derived exosome-like vesicles to overcome
application limitations.

Keywords: Anti-colorectal cancer, Anti-inflammation, Curcumin, Exosome vesicles, Gut microbiota

the most popular medicinal herbs, spices, and
functional supplements. The popularity of turmeric
can be attributed to its pharmacological activity,
including it antioxidant [5], antibacterial [6], anti-
inflammatory [7], anti-tumour [8], and antiaging
properties [9]. These functional activities of turmeric
have been attributed to its rich curcuminoid content
[1,2]. Curcuminoids (Fig. 1) are linear diary-

1. Introduction

T urmeric (Curcuma longa L.) is a medicinal plant

that is used extensively in Chinese and Indian
traditional medicine as a home remedy for various
diseases. It is botanically related to ginger (Zingi-
beraceae family). It is a perennial plant with a short
stem, large leaves, and rhizomes of various shapes

that are often branched and have a brownish-yellow
peel [1]. Today, turmeric is grown in several parts of
the world, including Southeast Asia, China, and
South America [2]. It has been used for medical
purposes in India and China for many centuries to
treat liver ailments [3] and other inflammation-
related symptoms [4]. Turmeric has become one of

lheptanoids from the rhizomes that include curcu-
min (CUR) and two related compounds:
demethoxycurcumin (DMC) and bisdemethox-
ycurcumin (BDMC) [2]. Curcumin is a crystalline
compound with a bright orange-yellow colour. It is
often used as a food colouring and additive [2]. In
the current international regulations, curcumin is
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Fig. 1. Curcuminoids found in Curcuma longa, curcumin metabolites (reduction), and its degradation products (cleavage).

considered a safe food additive. The World Health
Organization (WHO) evaluated the acceptable daily
intake (ADI) of curcumin as a food colouring addi-
tive in the range of 0—3 mg/kg [10]. The United
States Food and Drug Administration (USFDA) has
declared curcumin as ‘generally regarded as safe’
(GRAS). It is worth noting that most researchers
consider curcumin to exhibit a wide variety of
pharmacological properties and is relatively safe in
animals and humans [11]; however, high doses
(>50,000 ppm) ingested in order to overcome the
low bioavailability of curcumin have some side ef-
fects and safety concerns [12]. Overall, if the
bioavailability of curcumin can be effectively
improved, it has the potential to improve or even
cure diseases [13].

2. Composition of turmeric

Curcumin (C,Hy0Os) is also known as difer-
uloylmethane or (1E,6E )-1,7-bis(4-hydroxy-3-
methoxyphenyl)hepta-1,6-diene-3,5-dione, =~ DMC
(C30H1505) is also known as (1E,6E )-1-(4-hydroxy-3-
methoxyphenyl)-7-(4-hydroxyphenyl)hepta-1,6-
diene-3,5-dione, and BDMC (C;9H,0,) is also
known as (1E,6E)-1,7-bis(4-hydroxyphenyl)hepta-
1,6-diene-3,5-dione. These three major curcumi-
noids are also found in other Curcuma species at
different concentrations and proportions. Curcumi-
noids were only detected in a few species, such as C.
longa and C. phaeocaulis, and geographical differ-
ences affect its content. In China, C. longa (Jian-
ghuang) rhizomes from Pengzhou Sichuan contain
the highest amount of curcuminoids (40.36 mg/g),

which are almost 20-fold higher than those found in
C. longa (Huangsi Yujin) collected from the same area
[14]. In another study, C. longa rhizomes from the
Zhengzhou pharmacies market exhibited a higher
amount of curcuminoids (172.6 mg/g) [15]. Of note,
curcuminoid content is related to geographical
location; in Nepal, turmeric that is cultivated in
warmer climates (Southern Nepal) has higher cur-
cuminoid content than turmeric samples from
cooler climates (Northern Nepal) [16]. In India,
samples collected from different geographical re-
gions also have different curcuminoid content; the
main reason is the different environmental condi-
tions across the Indian subcontinent. The maximum
and minimum amount of curcuminoids were found
to be present in samples of turmeric from Erode
(South province, 50.27 mg/g) and Surat (West
province, 14.08 mg/g) [17]. In Brazil, different sam-
ples in the same area contained different amounts of
curcuminoids in the rhizome, from 18.2 mg/g to
23.3 mg/g. The curcumin content in the two samples
is not much different and is mainly due to the dif-
ference in the content of DMC and BDMC [18].
Different Curcuma species may have different cur-
cuminoid content, curcuminoids, and xanthorrhizol
(XNT) content, which can be used as a specific
marker to differentiate Curcuma xanthorriza and C.
longa [19]. The guidelines of the Taiwan Herbal
Pharmacopeia [20] and The Pharmacopoeia of the Peo-
ple’s Republic of China 2020 Edition [21], two official
compendiums of Chinese drugs, state that medici-
nal turmeric must contain more than 1% curcumin,
and almost all turmeric rhizome samples meet this
specification. However, this guideline is limited to
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the rhizome of turmeric. The curcumin content of
the root is much lower than that of the rhizome [14];
therefore, the plant localisation or extract of me-
dicinal turmeric must be considered for a stand-
ardised dose of curcumin [22]. Furthermore,
ingested turmeric products may contain metabolites
and degradation products of curcumin. Curcumin
will easily degrade in neutral to alkaline solutions
and is cleaved into ferulic acid, feruloyl methane,
and vanillin (Fig. 1) [23]. Tetrahydrocurcumin
(THC), hexahydrocurcumin (HHC), and octahy-
drocurcumin (OHC) (Fig. 1) are hydrogenated de-
rivatives of curcumin [24] that appear as metabolites
after curcumin is metabolised by cells or animals.
Because of their structure, they are functionally
closely related to curcumin [25]. In addition to the
extraction and isolation of curcuminoids from
turmeric, chemical synthesis is a strategy for
obtaining curcuminoids [26,27]. The earliest record
of chemical synthesis of curcumin was in 1913 [28];
since then, many studies have explored preparation
methods of curcumin by chemical synthesis
[26,29,30]. Unlike curcumin extracted from turmeric,
which often contains a variety of curcuminoids,
chemical synthesis can prepare specific, high-purity
curcuminoids by adjusting conditions and pre-
cursors. This makes it possible to examine the
chemical structure and mechanism of action of
curcuminoids more precisely when discussing the
function of curcuminoids.

3. Function of curcumin and curcuminoids

3.1. Antioxidant

As cells grow, oxygen consumption leads to the
production of reactive oxygen species (ROS) [31].
ROS are forms of activated oxygen that include free
radicals, such as superoxide anion radicals (O;),
hydroxyl radicals (*OH), and non-free-radical spe-
cies, such as H,O, and singlet oxygen (*0y) [32].
ROS in cells cause the peroxidation of membrane
lipids, leading to lipid peroxides. Furthermore, ROS
can damage intracellular chemical composition,
such as nucleic acids, lipids, proteins, and carbo-
hydrates [25], which affect the inner workings of the
cell. Generally speaking, antioxidant systems (e.g.,
the glutathione cycle and superoxide dismutase) in
cells scavenge ROS and free radicals [33]; however,
as the oxidative pressure increases, these systems
may be overloaded and become ineffective. It has
been confirmed that ROS production is directly
related to many diseases [34]. Dietary antioxidants
can protect the human body from free radicals and
the effects of ROS. The curcuminoid structure

contains several functional groups, including the -
diketone group, carbon—carbon double bonds, and
phenyl rings containing hydroxyl and methoxy
substituents [35]. Interestingly, the demethoxy and
hydrogenated derivatives of curcumin, such as
THC, HHC, and OHC, were remarkably more
potent than curcumin in in vitro antioxidant assays
[24]. Due to the loss of the ortho-methoxyphenolic
group, BDMC does not have hydrogen donating
activity [36].

3.2. Anti-inflammatory

Inducible nitric oxide synthase (iNOS) is one of
the critical enzymes producing nitric oxide (NO)
from the amino acid L-arginine, and iNOS-derived
NO plays a crucial role in blood pressure regulation,
inflammation, infection, and the progression of
malignant diseases [37]. In macrophages, iNOS
serves as a mediator of non-specific host defence
and plays an essential role in clearing bacterial,
viral, fungal, and parasitic infections [38]. When
macrophages are stimulated, iNOS produces NO,
which regulates blood pressure and has antibacte-
rial activity. However, when the iNOS-derived NO
is overproduced, it causes excessive expansion of
blood vessels and tissue damage [39]. In this case,
inducible haem oxygenase 1 (HO-1) plays a regu-
latory role as a rate-limiting enzyme; it catalyses the
metabolism of haem into bilirubin, carbon monox-
ide (CO), and iron ions to regulate iNOS-mediated
production of NO [40,41]. HO-1 and CO suppress
the expression of iNOS and NO production in
activated macrophages by deactivating nuclear fac-
tor-kappa B (NF-«kB) [38,40,42]. Surprisingly, curcu-
min has a similar function; it indirectly inhibits NO
production via inhibition of iNOS through sup-
pression of NF-«B [36,43,44]. The NO-scavenging
activity of curcumin and its derivatives, curcumin
and THC, is potent, and the ICs, values are:
curcumin = THC > DMC > BDMC = HHC > OHC
[36]. Cyclooxygenase (COX) has two isozymes:
COX-1 and COX-2. Its function is to catalyse the
synthesis of prostaglandin from arachidonic acid.
The role of COX-1 is to protect the gastric mucosa
and maintain kidney function; the role of COX-2 is
to promote prostacyclin (PGIL;) production, which
causes inflammation [45]. Curcumin, DMC, and
BDMC are reported to inhibit COX-1 and COX-2
(32.0%, 38.5%, and 39.2% COX-1 inhibitory activity
at a dose of 125 ng/mlL; 89.7%, 82.0%, and 58.9%
COX-2 inhibitory activity at a dose of 125 pg/mL,
respectively). The COX-1 inhibitory effect of these
compounds was slightly below that of the positive
controls Aspirin (ng/mL), ibuprofen (2.06 pg/mL),
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and naproxen (2.52 pg/mL); however, they exhibited
higher COX-II inhibitory activity than positive
controls [45]. Furthermore, RAW264.7 macrophages
treated with curcumin exhibited increased expres-
sion of HO-1 and decreased expression of iNOS
protein and decreased iINOS promoter activity,
which reduced NO production [38]. Moreover, cur-
cumin can block lipopolysaccharide (LPS)-mediated
expression of tumour necrosis factor o (TNF-a),
interleukin (IL)-1B, and IL-6. Curcumin may alle-
viate inflammation through the nuclear factor-E2-
related factor 2 (Nrf2)/HO-1 pathway [46]. Further-
more, the anti-inflammatory effect may be associ-
ated with activator protein-1 (AP-1) [47]. NF-«B and
AP-1 are two transcription factor genes that are
crucial to the LPS-induced inflammatory response
and are commonly overexpressed in cancer cells
[48]. In this situation, by inhibiting NF-«kB, curcumin
treatment results in the death of malignant cells and
inhibits inflammation. Of note, one study suggested
that the role of curcumin in the inflammatory sys-
tem was like a pro-drug that requires oxidative
activation to a reactive metabolite to exert anti-in-
flammatory  effects [49]. Stably transfected
RAW264.7 cells showed reduced luciferase activity
expressed downstream of an NF-kB response
element when treated with Curcuminoids and
induced with LPS. Furthermore, NF-«B inhibition
by curcumin and DMC involves the oxidation of
these compounds into reactive electrophiles (Fig. 2)
[50]. In contrast, BDMC is less likely to undergo
spontaneous oxidative transformation due to the
lack of ortho-methoxy groups that can accelerate the
oxidation of the phenolic hydroxyl [51]. This also
explains why curcumin and DMC have similar
inhibitory pathways [36,45], while BDMC is
different. In view of the lack of uncertainty of cur-
cumin oxidative in vivo, the anti-inflammatory po-
tential of oxidation-independent BDMC may be a
new research direction.

3.3. Anti-diabetes

Diabetes is a chronic metabolic disease. According
to the guidelines published by the American Dia-
betes Association in 2021, diabetes is diagnosed
under one of the following conditions: glycosylated
haemoglobin (HbAlc) >6.5%, fasting plasma
glucose >126 mg/dL, or 2-h plasma glucose
>200 mg/dL, or random blood glucose >200 mg/dL
[52]. Diabetes can be categorised into four types:
insulin-dependent type 1 diabetes, non-insulin-
dependent type 2 diabetes, gestational diabetes, and
diabetes caused by other factors. Among these
types, type 2 diabetes accounts for most cases of

diabetes. In addition, due to the functional loss of
blood sugar utilisation, diabetes often causes dysli-
pidaemia, which promotes mitochondria to produce
ROS and causes macrophages to produce pro-in-
flammatory factors, such as iNOS and ROS, even-
tually leading to complications, such as heart,
kidney, and liver disease [53]. Incretin is a collective
term for peptide hormones that act on pancreatic
cells to stimulate insulin secretion [54]. Research has
discovered that curcumin can inhibit gluconeogen-
esis enzymes glucose-6-phosphatase (G6Pase),
phosphoenolpyruvate carboxykinase (PEPUC), and
adenosine 5-monophosphate-activated  protein
(AMP) kinase activity to suppress liver gluconeo-
genesis and glycolysis. Moreover, curcumin can in-
crease the effect of insulin in inhibiting glycolysis
[55]. In an animal model, treatment with 15 mg/kg
and 30 mg/kg curcumin significantly reduced blood
sugar, vasoconstrictor pressure, proteinuria, poly-
uria, serum creatinine, and blood urea nitrogen
(BUN) in male diabetic Sprague—Dawley rats;
furthermore, it reduced the production of kidney
lipid peroxidation products (malondialdehyde) and
increased the activity of antioxidant enzymes
glutathione, catalase, and superoxide dismutase
[56]. Recent research highlighted that curcumin
could significantly increase GLP-1 secretion in
GLUTag cells [57]. The secretion of GLP-1 requires a
B-diketone structure and an aromatic ring with at
least one methoxy group; curcumin has a B-diketone
structure with two methoxy groups, making it the
most potent candidate. In contrast, BDMC, which
lacks a methoxy group, and THC, which lacks the B-
diketone structure, cannot stimulate GLP-1 secre-
tion [57,58]. In a clinical trial, 240 subjects who met
the pre-diabetes criteria were divided into control
and placebo groups. After treatment with 1.5 g of
curcuminoids daily for 12 months, there was a sig-
nificant decrease in the subjects' diabetes indicators
(glycated haemoglobin, fasting blood glucose, and
glucose tolerance), improved pancreatic f-cell
function, and increased performance of anti-in-
flammatory factor adiponectin [59]. Together, these
data support the therapeutic potential of curcumin
in controlling diabetes.

3.4. Anti-colorectal cancer

One of the basic concepts of cancer is the balance
between cell proliferation and cell death [60]. When
the apoptotic signals lose their function, cells pro-
liferate out of control, leading to cancer [61].
Apoptotic signals are generated through two main
pathways: in the intrinsic pathway, the mitochon-
drial membrane inhibits the expression of anti-
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Fig. 2. Mechanistic differences in the inhibition of NF-«B by curcumin, DMC, and BDMC.

apoptotic proteins Bcl-2 and Bcl-xL; in contrast,
increasing the death receptors in the extrinsic
apoptotic pathway triggers TNF-related apoptosis
[62]. A study highlighted that curcumin disturbed
the balance of mitochondrial membrane potential
and increased the inhibition of Bcl-xL protein [63].
Furthermore, a study has revealed that curcumin
significantly increases the expression of death re-
ceptor 5 (DR5) on both the mRNA and protein level
[64]. Curcumin modulates tumour cell growth by
regulating multiple cell signalling pathways. In
addition to the cell survival pathway (Bcl-2, Bcl-xL)
and death receptor pathway (DR4, DR5), there is the
cell proliferation pathway (cyclin D1, c-myc), cas-
pase activation pathway (caspase-8, -3, -9), tumour
suppressor pathway (p53, p21), mitochondrial
pathways, and protein kinase pathway (JNK, Akt,
and AMPK) [65]. In the aforementioned pathways
(Fig. 3), curcumin has shown significant anticancer
effects in vitro and in vivo against several types of
cancer, including prostate cancer, breast cancer, and
colorectal cancer.

Colorectal (colon) cancer is one of the leading
tumours globally. It is considered among the third
most common cancers worldwide, with an array of
high morbidity and mortality, being the fourth

highest cause death [66,67]. Unfortunately, although
treatment is mainly based on surgical resection,
many patients continue to have a high risk of
tumour recurrence [68]. COX-2 overexpression is
observed in up to 90% of sporadic colon cancers and
40% of colon adenomas [69]. Therefore, specific
COX-2 inhibitors have been clinically studied as
agents for colon cancer chemoprevention; however,
there are still doubts about their safety as they may
increase cardiovascular risk [70,71]. Studies have
shown that administration of curcumin can reduce
the levels of oxidative DNA adduct 3-(2-deoxy-p-di-
erythro-pentafuranosyl)-pyr[1,2-a]-purin-10(3H)
one (M;G) in malignant colorectal cells without
changing the level of COX-2 protein (Table 1.) [72].
Unlike in clinical studies, both M;G and COX-2
protein are reduced in animal models following
treatment with curcumin [73]. This outcome is
hypothesised to be due to the ability of curcumin to
inhibit COX-2, which is mainly caused by the
reduction or conjugation of generated species [74].
In HCT 116 colorectal cancer cells treated with
curcumin, the cell cycle was arrested in the G2/M
phase via miR-21 gene regulation, which inhibited
tumour tissue growth [75]. In another study, cur-
cumin induced senescence and inhibited the growth
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of HCT116 colorectal cancer cells [76]. In an in vivo
model, curcumin significantly reduced aberrant
crypt foci (ACF) and iNOS expression and arginase
activity in 1,2-dimethylhydrazine (DMH)-induced
ACF mice [77]. Furthermore, a curcumin-supple-
mented diet increased survival, decreased colon
weight/length ratio, and decreased tumour burden
in rats with AOM-induced colon cancer [78].
Although curcumin seems effective in preventing or
treating colon cancer in vivo and in vitro, oral
administration of curcumin results in its rapid
metabolism, and approximately 60—70% of the
compound is excreted in the faeces [67]. In clinical
trials, quantifiable serum levels are not achieved
until high doses are administered [69]. This obser-
vation can be attributed to the low bioavailability of
curcumin. Because of the limited clinical effects of
curcumin alone [79], current studies tends to in-
crease the bioavailability of curcumin or administer
it as an adjuvant treatment [80]. In an in vivo study
in HCT116 xenograft nude mice, curcumin targeted
NF-«kB and improved the response of radiation
therapy to colorectal cancer [81]. Another in vitro
model study confirmed that curcumin prevented the
proliferation and post-irradiation clonogenic sur-
vival of multiple colorectal cancer cell lines by

suppressing radiation-induced NF-«kB activation
[82]. In addition to radiation therapy, curcumin
combined with chemotherapy has been extensively
studied. In a study evaluating a combination treat-
ment regimen of 5-fluorouracil (5-FU) and curcumin
in colorectal cancer cells, cell cycle analysis revealed
that treatment with curcumin and 5-FU led to
accumulation of colorectal cancer cells in the S cell
cycle phase and induction of apoptosis [83]. In
another study, when compared with treatment with
5-FU alone, pre-treatment with curcumin signifi-
cantly enhanced the effect of 5-FU on colorectal
cancer cells [84].

3.5. Other physiological activities

Curcumin has potential in the treatment of a va-
riety of cancers in addition to colorectal cancer.
Prostate cancer is the second most commonly
diagnosed cancer in men, and ranks fifth as the
leading cause of death globally [85]. The current
mainstream treatment methods of localised and
androgen-dependent prostate cancer (ADPC)
include hormonal treatment, surgery, and radio-
therapy. However, these cancerous cells progress to
androgen-independent prostate cancer (AIPC) over
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Table 1. Effects of curcumin in colon cancer.

Model Curcumin dose/ Affected signalling Mechanism Reference

concentration pathways

Clinical trial 450, 1800, 3600 mg/day Curcumin reduces the MG | [72]

adenoma burden in pa- COX-2 -
tients with colorectal
cancer.

In vivo 2% mixed with daily Curcumin prevents colon MG | [73]
Female F344 rats diet cancer in rodent models. COX-2 |

In vitro 10 uM Curcumin regulates miR- AP-1 binding | [75]
HCT116 21, tumour growth, inva- miR-21 |

sion, and metastasis of Pdcd4 1
colorectal cancer.

In vitro 10 pM Curcumin induces cell ATGS protein | [76]
HCT116 cycle arrest and cellular Cleavage of PARP 1

senescence and down- Cell viability |
regulates autophagosome p53 1
formation.

In vivo 0.05% and 1% diets Curcumin reduced or Tumour burden | [78]
Specific pathogen-free eliminated colonic tumour Colon weight/length ratio |
wild-type burden in AOM-induced bacterial richness 1
(WT) 129/SvEv mice colon cancer.

Germ-freell10~’~mice

In vivo 60 mg/kg Curcumin modulates Arginase Activity | [77]
Swiss-Webster male polyamines synthesis, ACF formation |
mice morphological changes, Nitrotyrosine 1

oxidative stress, and alters formation |
homeostasis and tumour Apoptosis 1
development. HES-1 1

TGF-B 1

Lipid peroxides |

In vivo 1 g/kg Curcumin targets NF-«kB Tumour regrowth | [81]
HCT116 xenograft in to improve the response of Ki-67 proliferation index |
nude mice radiation therapy. NF-kB activity |

In vitro 25 uM Curcumin inhibits the NF-kB activity | [82]
HCT116 proliferation and post- BCL-xL |
HT29 irradiation clonogenic BCL-1 |
SW620 survival of multiple colo- Cyclin D1 |

rectal cancer cell lines. COX-2 |
In vitro 20 uM Curcumin enhances anti- Caspase-8 1 [83]
HCT116 proliferation and induces Caspase-9 1
apoptosis in 5-FU Caspase-3 1
treatment. Bax 1
PARP 1
BCL-xL |
Cyclin D1 |

In vitro 20 M Curcumin enhances che- Cell growth | [84]

HCT116 mosensitivity in 5-FU Colonspheres |

treatment.

Apoptosis T

time and are no longer dependent on hormones
[86]. Research has shown that curcumin inhibits the
proliferation of prostate cancer cells and induces
apoptosis [87] by interfering with several cellular
pathways, including mitogen-activated protein ki-
nase (MAPK), epidermal growth factor receptor
(EGFR), and NF-«kB [86,88]. The dilemmas faced in
the treatment of breast cancer and prostate cancer
are similar. After lumpectomy, radiotherapy,
chemotherapy, and endocrine therapy, the recur-
rence rate of breast cancer remains high [89]. A

study evaluated the effects of curcumin on cell cycle
regulatory proteins, matrix metalloproteinases
(MMPs), and NF-«B in MDA-MB-231 and BT-483
breast cancer cells. The results indicated that cur-
cumin exhibited antiproliferative activity by down-
regulating NF-kB [90]. Furthermore, curcumin has
in vivo and in vitro effects in head and neck squa-
mous cell carcinoma [91,92] and ovarian cancer
through similar pathways [93,94].

In addition to the aforementioned functionalities,
curcumin can reduce mouse oxidized protein,
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cytokine IL-1B, astrocyte skeleton protein glial
fibrillary acidic protein (GFAP), insoluble and sol-
uble amyloid B-amyloid expression, and inhibit
microgliosis to prevent Alzheimer's disease [95].
Furthermore, curcumin has in vivo antibacterial ac-
tivity that can prevent and restore damage to the
stomach caused by Helicobacter pylori [96]. Recent
studies have reported the antiparasitic properties of
curcuminoids (DMC and BDMC), which inhibited
TGR activity, giving them the ability to fight Taenia
crassiceps cysticercosis. Moreover, curcuminoids
(including curcumin, DMC, and BDMC) can effec-
tively inhibit neuraminidase activity to inhibit
influenza viruses HIN1 and HIN2. Of note, several
studies have stated that curcumin has the potential
to treat severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) infection [97,98]. In addition,
studies have mentioned that curcumin can inhibit
autoimmune deficiency syndrome (AIDS), Parkin-
son's disease, allergies, cardiovascular diseases, and
other physiological activities [11,99—102].

4. Application dilemma

Although curcumin has been shown to exhibit
therapeutic and protective effects in various dis-
eases, studies have shown that oral administration
of 8 g/day of curcumin will only results in a plasma
concentration of about 2.5 ng/mL [103]. This is due
to the low water solubility and bioavailability of
curcumin, and it is also degraded by the digestive
system or converted into metabolites [104]. In gen-
eral, higher doses may be more effective, but further
consideration should be given to potential side
effects.

Turmeric and curcumin have been used for de-
cades as food additives, supplements, and medi-
cines. According to reports by the Joint United
Nations and World Health Organization Expert
Committee on Food Additives (JECFA) and Euro-
pean Food Safety Authority (EFSA), the ADI of
curcumin is 0—3 mg/kg body weight [10,105,106]. A
long-term curcumin carcinogenicity study by the
National Toxicology Program (NTP) revealed that
the incidence of malignant neoplastic lesions (car-
cinomas) did not reach statistical significance and
the observed effects were not dose-dependent, were
in agreement with historical control values, and
were not consistent across sexes and/or species;
these observations eliminated concerns of genotox-
icity [107]. Nevertheless, there are still some records
of side effects in previous research. For example,
diarrhoea, headache, rash, and yellow stool have
been reported after oral administration of
500—12000 mg of curcumin; however, the same

study stated that a daily intake of up to 12000 mg of
curcumin has no harmful effects on individuals
[108]. In another study, dose-limiting toxicity was
not observed up to 3600 mg of curcumin. Still, pa-
tients reported two types of gastrointestinal adverse
events, and a rise in serum alkaline phosphatase
levels was also observed [109]. These concerns make
administering high doses of curcumin less optimal.
At present, the most studied strategy is the modifi-
cation of curcumin and its delivery systems, using
nanoparticles [110—112], micellization [113—115],
and chemical conjugation [104,116—118]. The appli-
cation of these technologies can improve the sta-
bility, solubility, in wvivo absorption, biological
activity, and safety of curcumin without increasing
the dosage. Recent studies have begun to explore
more strategies that can help improve the applica-
tion of curcumin.

5. Novel application strategies

5.1. Curcumin analogues and related substances

The main functionalities of curcumin are derived
from three reactive functional groups on the
chemical structure, including one diketone moiety
and two phenolic groups. These groups determine
the biological activity of curcumin, including
hydrogen donation reactions, reversible and irre-
versible nucleophilic addition reactions, hydrolysis,
degradation, and enzymatic reactions [27]. Ana-
logues or degradation products that are different
from curcumin can also promote or reduce its
functionality. Therefore, direct supplementation of
curcumin analogues or degradation products may
be a potential strategy to improve its effectiveness
(Table 2).

5.1.1. Curcumin analogues

DMC and BDMC are the most abundant curcu-
minoids after curcumin, and research has shown
that their functions may be better than curcumin
[119]. For example, in the MDA-MB-231 human
breast cancer cell line, DMC exhibited anti-invasive
activity by modulating the expression of invasion-
associated proteins [120]. In human glioma U87 cells,
DMC bound more efficiently to the Bcl-2 putative
active site and induced Bcl-2-mediated G2/M arrest
and apoptosis [121]; similar results were observed in
MCF-7 cells [122]. In HER2-overexpressing bladder
cancer cells, it significantly suppressed the expres-
sion of HER2, preferentially inhibited cell prolifera-
tion, and induced apoptosis. In human cervical
cancer HelLa cells, it suppressed migration and in-
vasion via inhibition of NF-«B pathways [123].
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Table 2. Activities of curcumin analogues, metabolites, and degradation products.

Curcumin analogues/  Bioactivity Reference
related substances
Demethoxycurcumin e Suppressed migration and invasion in MDA-MB-231 human breast cancer cell line. [120]
(DMC) o Induced Bcl-2-mediated G2/M arrest and apoptosis in human glioma U87 cells. [121]
o Exerted a cytostatic effect at G2/M in MCF-7 human breast tumour cells. [122]
o Inhibited cell proliferation and induced apoptosis in HER2-overexpressing bladder cancer cells. [125]
o Increased the sensitivity of cisplatin-resistant cancer cells. [124]
o The inhibition and degradation activity of bacteria. [126,127]
Bisdemethoxycurcumin e Cytotoxic against human ovarian cancer OVCAR-3 cells. [128]
(BDMCQ) e Prevented DMH-induced colon carcinogenesis. [129]
o Accelerated gastric ulcer healing. [130]
o Induced apoptotic cell death in Hep 3B cells. [131]
o Inhibited MCF-7 breast cancer cell proliferation. [132]
o Inhibited adipogenesis in 3T3-L1 preadipocytes and suppressed obesity. [133]
e Used as an antibacterial agent to relieve antibiotic resistance. [134]
Tetrahydrocurcumin o Ameliorated oxidative stress-induced renal injury. [139]
(THC) o Alleviated the oxidative stress caused by cholesterol intake. [140]
e Antioxidant and vascular protective effects in L-NAME-induced hypertension. [141]
e Ameliorated insulin resistance in fatty acid-induced hepatic steatosis. [142]
e Preventative effects on azoxymethane-induced colon carcinogenesis. [143]
o Anti-angiogenic effects on implanted hepatocellular carcinoma. [144]
Ferulic acid e Improved cardiovascular and kidney structure and function in hypertensive rats. [148]
o Attenuated acute renal injury induced by cisplatin. [149]
o Improved cognitive function. [150—152]
o Inhibited cell proliferation and invasion in HeLa and CaSki cervical cancer cells. [153]
Vanillin o Induced GO0/G1 arrest and apoptosis in human HT-29 colon cancer cells. [156]
e Induced apoptosis in human hepatic carcinoma HepG2 and neuroblastoma SH-SY5Y cells. [157]
o Reduced apoptosis and exerted neuroprotective effects in rats with spinal cord injury. [158]
e Promoted early neurofunctional development in neonatal rats. [159]
Calebin A o Protected cells from beta-amyloid insult. [161]
o Inhibited cell growth and induced apoptosis in drug-resistant human gastric cells. [162]
o Regulated survival and inflammatory gene products, leading to inhibition of cell growth and  [160]

chemosensitisation.

cells.

Suppressed NF-kB-mediated proliferation, invasion, and metastasis of human colorectal cancer [163]

Furthermore, some studies reported that DMC
increased the sensitivity of cisplatin-resistant cancer
cells, such as A549 human alveolar basal epithelial
adenocarcinoma cells [124] and HER2-over-
expressing bladder cancer cells [125]. In addition to
its antagonistic effects on specific cancer cells, DMC
has potential as an antimicrobial against pathogens
such as Candida albicans ATCC 10231 [126] and
methicillin-resist Staphylococcus aureus [127].
Compared with DMC, BDMC has two fewer
methyl groups, which means it has better water
solubility and bioavailability. The structure of
BDMC is responsible for its loss of antioxidant ac-
tivity [36]; however, it has an increased anti-in-
flammatory effect [50]. However, there appears to be
a trend in other specific conditions. In human
ovarian cancer OVCAR-3 cells, BDMC exhibited
higher cytotoxic activity than curcumin and DMC
against ovarian cancer cells [128]. In a DMH-
induced carcinogenesis in vivo model, intragastric
BDMC significantly reduced the number and size of
tumours in the colon in addition to hepatic oxidative

stress [129]. In a gastric ulcer model, BDMC sup-
pressed iNOS-mediated inflammation and directly
accelerated gastric ulcer healing [130]. In human
liver cancer Hep3B cells, BDMC decreased cell
viability and induced S phase arrest, DNA damage,
and cell apoptosis [131]. In human breast cancer
MCF-7 cells, BDMC increased the concentration of
ROS in the cells, inhibiting cancer cell proliferation
[132]. In addition to its anti-cancer effects, BDMC
has anti-obesity effects; it inhibited adipogenesis in
3T3-L1 preadipocytes and suppressed obesity in a
high-fat-diet-induced in vivo model [133]. Finally,
BDMC has antimicrobial effects and may be a po-
tential natural antibacterial agent to ameliorate
antibiotic resistance [134]. DMC and BDMC are
potent and are comparable to curcumin in many
studies; however, their properties are more anti-
inflammatory than purely anti-oxidative due to
chemical structural factors, and both have better
water solubility and bioavailability than curcumin
[135]. These two compounds can be used as alter-
native strategies where curcumin fails.
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THC is one of the primary metabolites of curcu-
min; it lacks an o p-unsaturated carbonyl moiety
[136] and has different spectral properties from
curcumin, usually producing white crystals at room
temperature. Due to its higher bioavailability and
different biological activity and molecular mecha-
nisms than curcumin, some studies suggest that it
has more potential for development than curcumin
[137]. THC is well known for its anti-oxidative ac-
tivity. During the anti-oxidative process, the p-
diketone moiety C—C bond will be cleaved and
exhibit anti-oxidative activity [138]. THC can be
used against ferric nitrilotriacetate (Fe-NTA)-
induced oxidative renal damage in male ddY mice
[139], and it can effectively alleviate oxidative stress
in cholesterol-fed rabbits [140]. Furthermore, THC
has shown antioxidative and vascular protective
effects in L-NAME-induced hypertension in rats
[141]. In fatty acid-induced hepatic steatosis, THC
ameliorated insulin resistance in HepG2 cells [142].
Some studies have shown that THC has partial anti-
cancer effects, such as preventing azoxymethane-
induced colon carcinogenesis [143], and anti-angio-
genic effects on implanted hepatocellular carcinoma
in nude mice [144]. Overall, THC is more effective
than curcumin in oxidative stress-related diseases
due to its excellent antioxidant effect. Overall, the
chemical structure of THC enhances its antioxidant
effects; therefore, it can be more effective in oxida-
tive stress-related diseases.

5.1.2. Curcumin related substances

Ferulic acid and vanillin were structurally identi-
fied as curcumin-derived radical reaction products
[145], and both have higher water solubility as cur-
cumin degradation products [146]. Although studies
have highlighted that the two compounds may not
be major curcumin degradation products [147], as
long-studied and biologically active phenolic com-
pounds, they may still retain some functional
properties of turmeric after degradation. Research
has confirmed that ferulic acid improves cardio-
vascular and kidney structure and function in hy-
pertensive rats [148] and has the ability to attenuate
acute renal injury induced by cisplatin [149].
Furthermore, studies have shown that ferulic acid
improves cognitive function [150—152]. Regarding
anti-cancer activity, ferulic acid can significantly
inhibit cell proliferation and invasion in HeLa and
CaSki, two cervical cancer cells [153]. Ferulic acid
may not possess as effective biological activity as
curcumin, but its use as an adjunct to curcumin can
compensate for its mechanical deficiencies [150].

Although vanillin and ferulic acid have similar
structures, vanillin is more remarkable in food

applications. Like curcumin, it is a common flavour
additive and is probably the most widely used fla-
vouring agent for sweet foods. Furthermore, its
antioxidant activity helps stabilise the oxidation and
degradation of food components [154]. Vanillin and
ferulic acid have similar biological activity,
including antioxidant, anti-inflammatory, neuro-
protective, and anticancer properties [155]. In
human colon cancer HT-29 cells, vanillin arrests the
cell cycle in GO/G1 phase and significantly increases
apoptosis in the sub-G0 phase [156]; this effect has
also been reported in human hepatic carcinoma and
neuroblastoma cells [157]. Recent studies have
found that, in addition to its neuroprotective effects
[158], vanillin promotes early neurological devel-
opment and improves hypoxic-ischaemic brain
damage in neonatal rats [159]. More notably, due to
its lack of toxicity in rats [162], vanillin is well-suited
for curcumin application strategies.

Calebin A (4-[3-methoxy-4-hydroxyphenyl]-2-
oxo-3-enebutanyl-3-[3-methoxy-4- hydroxyphenyl]
propenoate) is a compound that had not been iso-
lated or identified in turmeric until recently [160]. It
was originally identified to protect cells from beta-
amyloid insult [161]. Follow-up studies found that it
can inhibit cell growth and induce apoptosis in
drug-resistant human gastric carcinoma MDR cell
line SGC7901/VINCRISTINE. It resulted in a
reduction in S phase and G2/M phase arrest and
modulated the activity of MAPK family members
[162]. Studies have reported that calebin A inhibits
the NF-kB activation pathway via interaction with
p65 and enhances multiple cancer cell apoptosis
[160]. In addition, one study reported that calebin A
had anti-proinflammatory and anti-tumour activity
in TNF-B-stimulated colorectal cancer cells [163]
and enhanced the effect of the anticancer drug 5-FU
[164]. Despite the sparsity of research on calebin A,
according to the current literature, it has potential in
cancer prevention and treatment.

In conclusion, the strategy of applying curcumin
analogues and related substances to replace curcu-
min is based on its structural activity. Ideally, it in-
creases bioavailability, leaving the active structure
unchanged. According to the reported results, cur-
cumin analogues and related substances have many
different efficacy aspects and application potential.

5.2. Gut microbiota regulation

The gut microbiota is an entire population of mi-
croorganisms located in the gut [165]. It is associated
with a variety of human diseases, including intesti-
nal disorders, such as inflammatory bowel disease
(IBD) [166] and irritable bowel syndrome (IBS) [167],
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and metabolic diseases, such as obesity and diabetes
[168—170]. The bioavailability of curcumin is
extremely poor; however, studies have pointed out
that with administered orally, curcumin has pref-
erential distribution and accumulation in the intes-
tinal tract and can reach the level of biological
activity [171]. In the intestinal tract, curcumin has a
regulatory impact on the gut microbiota, influencing
microbial abundance, variety, and composition
[172]. Curcumin significantly increases the propor-
tion of beneficial microbiota relative to pathogenic
microbiota by increasing the abundance of Bifido-
bacterium, Lactobacillus, and butyrate-producing
bacteria and reducing the abundance of Pre-
votellaceae, Coriobacteriaceae, enterobacteria, and
Enterococcus. In addition to its anti-inflammatory
and anti-colorectal cancer activity, these changes in
the intestinal microbiota can explain the immuno-
modulatory and anti-hyperlipidaemic effects of
curcumin [173]. Furthermore, the reduction of Pre-
votellaceae, Bacteroidaceae, and Rikenellaceae,
which are often linked to the onset of systemic dis-
eases [172], demonstrates the potential of curcumin
as a dietary supplement. One study reported that
curcumin dramatically shifted the overall structure
of a high-fat diet, disrupted gut microbiota towards
that of lean rats fed a normal diet, and altered the
gut microbial composition [174]. Some studies sug-
gest that this can be attributed to the curcumin
promotes a shift from pathogenic to beneficial bac-
terial strains and further affect intestinal metabo-
lisms, such as fatty acids [175,176] and bile acid
[176,177].

In addition to directly regulating the intestinal
microbiota, leading to changes in microbial rich-
ness, diversity, and composition, curcumin is bio-
transformed into various metabolites, such as
dihydrocurcumin (DHC), THC, and ferulic acid by
intestinal microbiota via demethylation, hydroxyl-
ation, demethoxylation, and decomposition
[175,178]. For example, studies have shown that
Escherichia coli from the intestinal tract will
sequentially convert curcumin into DHC and THC
[179]. Take the THC mentioned in Section 5.1.1 as an
example, the amount of THC and its conjugates (as
sulfates and glucuronides) were higher in the liver
and serum after dietary administration of either
curcumin or THC compared to the amount of cur-
cumin and its conjugates. Therefore, THC is more
readily absorbed from the gastrointestinal tract than
curcumin [139]. In addition to this, some studies
have reported that many of these metabolites are
more biologically active and bioavailable than cur-
cumin [175,180,181]. The above research note that
curcumin not only achieves health benefits by

regulating gut microbiota, but also by being
metabolized by these microorganisms to produce
bioavailable metabolites with similar effects to cur-
cumin, thus increasing health benefits [173].

5.3. Exosome vesicles

Previous studies on improving curcumin
bioavailability have focused on chemical or micro-
bial modification, binding phospholipids to form
complexes, entrapment using liposomes, and
nanoparticles as carriers [80,104,119,182—184]. Exo-
somes are extracellular microvesicles with a particle
size between 30 nm and 150 nm that carry a large
number of proteins, lipids, RNA, and DNA and can
be used as intercellular messaging tools [182].
Because exosomes have the ability to shuttle in and
out of cells, the use of exosomes as nano-drug car-
riers has potential for new therapeutic applications
[185]. In addition, many studies have suggested that
exosomes as drug carriers have the potential to
overcome the technology-related limitations of
traditional nanoparticles [186]. For example, exo-
somes have a longer circulating half-life, are more
easily internalised by cells, and can be linked to one
or more tumour-recognition ligands to enhance
their targeting capabilities, which make exosomes
ideal nanoparticle drug delivery vesicles [187].
Many studies have used exosomes to coat curcumin
and deliver it to targeted cells via membrane fusion
[182,188].

The coating of functional components with exo-
somes can be divided into two methods: active and
passive. The passive method only requires co-cul-
ture with functional components and cells or puri-
fication of exosomes from the culture medium of the
cell culture and mixing them so that functional
components can diffuse into exosomes via concen-
tration difference (Fig. 4) [189]. In 2010, a study
combined exosomes from mouse lymphoma with
curcumin to produce curcumin-coated exosomes
[182]. Subsequent studies have confirmed that cur-
cumin treatment of exosomes produced by chronic
myelogenous leukaemia (CML) can attenuate their
ability to promote angiogenesis and regulate endo-
thelial barrier tissue, thereby affecting tumour pro-
gression [190]. Another study used curcumin to
intervene in mouse brain endothelial cells (MBECs)
to produce curcumin-containing exosomes. It was
confirmed that curcumin could ameliorate oxidative
stress during endothelial cell damage and regulate
tightness. Expression of connexins (ZO-1, claudin-5,
and occludin) and adhesion junction protein (VE-
cadherin) and increase endothelial cell permeability
[191]. In contrast, the active method is more
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Fig. 4. Curcumin-loaded exosome vesicle preparation and its advantages.

complicated and involves techniques such as ultra-
sound, extrusion, membrane perforation, or
repeated freezing and thawing [192].

Studies have shown that curcumin coating of exo-
somes effectively increases the concentration of cur-
cumin in the plasma and improve bioavailability.
Injection of 100 mg/kg body weight of curcumin in
exosomes can reach the highest plasma concentra-
tion in 30 min (1250 ng/mL), which is 5—10-fold that
of curcumin alone [182]. Other studies have
confirmed that exosome coating effectively improves
the solubility, stability, and bioavailability of curcu-
min [183,184]. In recent years, the exosome drug
delivery system has been an emerging research field
that is a promising and novel concept. Existing
literature clarifies that exosome-coated curcumin has
anti-inflammatory [182,184], endothelial protective
[183,191], neuroprotective [193], and anti-cancer
properties [194]. Turmeric-derived exosome-like
vesicle-related research has begun to attract atten-
tion. Turmeric-derived nanoparticles (TDNPs) or
turmeric-derived nanovesicles (TNVs) isolated from
turmeric can effectively alleviate colitis. Research
indicates that oral administration of TDNPs prevents
colitis and promotes wound repair in colitis [195].
Meanwhile, another study reported that oral
administration of TNVs restored the damaged gut
barrier, modulated gut microbiota, reshaped the
macrophage phenotype, then increased its anti-in-
flammatory effect [196]. Compared with nanoparticle

delivery systems, TDNPs and TNVs are natural
colon-targeting therapeutics that have the advan-
tages of low toxicity and ease of large-scale produc-
tion. Although there are very few related studies, this
is a topic with great potential for future research
based on the current results.

6. Conclusion

Curcumin, the active component of C. longa
extract, has been extensively studied in recent de-
cades. These studies have confirmed its antioxi-
dant, anti-inflammatory, anti-diabetes, and anti-
cancer effects. However, the application of curcu-
min has been restricted by its low water solubility,
which results in low cellular uptake, poor oral
bioavailability, and low chemical stability. These
factors make its clinical effectiveness and in vivo
efficacy lower than its in vitro activity. Structural
modification, synergistic combination therapy, and
drug delivery systems are currently the most
common solutions that are proven to increase the
bioavailability of curcumin and improve its effec-
tiveness. With the development of innovative
technologies, there are an increasing number of
strategies to solve this problem. For example, after
passing through the digestive system and under-
going microbial metabolism, curcumin may be
metabolised into a more biologically active form,
thereby affecting overall body functions and
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organs. Therefore, directly involving these metab-
olites or degradants may achieve more direct ef-
fects. In addition, curcuminoids and curcumin
analogues provide similar biological activity but
higher bioavailability because of their structural
similarity to curcumin. We can also take advantage
of the low bioavailability of curcumin and allow it
to directly regulate gut microbiota, leading to
changes in microbial richness, diversity, and
composition. Finally, the application of an exosome
vesicle delivery system, greatly improves the
bioavailability of curcumin and provides the pos-
sibility of targeted therapy. Overall, these success-
ful findings provide valuable information for the
future study of curcumin. Furthermore, the poten-
tial function and development of curcumin should
be established.
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