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Abstract

This study developed a simple and rapid strategic technique to detect ractopamine (chemical growth-promoting agent)
in pork. Two highly sensitive and specific gold nanoparticle-based portable sensors, i.e., localized surface plasmon
resonance (LSPR) sensors, and lateral flow immunoassay (LFIA) strips were developed to detect veterinary drug residues
in food products, that have detrimental effects on humans. Optimization studies were conducted on several sensor
devices to improve sensitivity. Each sensor comprised functionalized gold nanoparticles conjugated with ractopamine
antibodies. The LSPR sensor chip achieved excellent detection sensitivity ¼ 1.19 fg/mL and was advantageous for
quantitative analysis due to its wide dynamic range. On the other hand, LFIA strips provided visual test confirmation
and achieved 2.27 ng/mL detection sensitivity, significantly less sensitive than LSPR. The complementary sensors help
overcome each other's shortcomings with both the techniques offering ease of use, affordability and rapid diagnosis.
Thus, these sensors can be applied on-site for routine screening of harmful drug residues in pork meat. They also
provide useful direction for advanced technologies to enhance assay performance for detecting various other food drug
contaminants.
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1. Introduction

P opulation, economic growth, and rising income
in developing and developed countries have

greatly increased the demand for food products [1].
Meat consumption has risen approximately 58% over
the past 20 years (1998e2018) and is expected to keep
rising [2]. Thus, meat producers have been forced to
administer chemical additives and supplements, such
as antibiotics, hormones, anti-inflammatories, and b-
agonists to improve growth efficiency and meat
quality [3]. This has led to increased veterinary drug
market growth, which is posing a major threat from
misuse and abuse. Administered drug remnants and
relatedmetabolites have been found inmeat and soil,
creating a serious menace for both humans and the
environment [4e6]. Human consumption of intended

drug contaminated food products poses multiple
health hazards, including carcinogenic effects, endo-
crine malfunction, and allergic reactions [7]. Interna-
tional organizations, such as Codex Alimentarius
Commission (CODEX) and European Commission
(EU), regulate animal drug usage in the food industry
by stipulating maximum residue limits (MRLs) for
veterinary drugs [8].
People worldwide have become highly health-

conscious and their desire to consume high-quality,
healthy, and safe (chemical pesticide-free) food [9],
urges developing sensor technology to quickly
determine baleful food components in the field to
ensure food safety for consumers. Lateral flow as-
says (LFAs) are recommended for food testing over
traditionally more precise methods, such as high-
performance liquid chromatography (HPLC) or
liquid chromatography-mass spectrometry (LC-MS)

Received 10 January 2022; revised 23 March 2022; accepted 25 March 2022.
Available online 23 November 2022

* Corresponding author at: Department of Biological Science and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
** Corresponding author.

*** Corresponding author at: Department of Biological Science and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
E-mail addresses: tjjeon@inha.ac.kr (T.-J. Jeon), moh@korea.kr (M.-H. Oh), yunsuk.huh@inha.ac.kr (Y.S. Huh).

https://doi.org/10.38212/2224-6614.3410
2224-6614/© 2022 Taiwan Food and Drug Administration. This is an open access article under the CC-BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

O
R
IG

IN
A
L
A
R
T
IC

L
E

mailto:tjjeon@inha.ac.kr
mailto:moh@korea.kr
mailto:yunsuk.huh@inha.ac.kr
https://doi.org/10.38212/2224-6614.3410
http://creativecommons.org/licenses/by-nc-nd/4.0/


to analyze veterinary drug residues [10,11], or
chromatography-mass spectrometry (GCeMS) [12]
and enzyme-linked immunosorbent assay (ELISA)
[13]. Although these are highly sensitive and selec-
tive methods, they are also time-consuming, and
require costly equipment and skilled professionals,
limiting on-site applications [14e16]. On the other
hand, LFA is relatively easy, convenient, and cost-
effective, and consequently has been employed
across a wide range of applications covering health
monitoring, veterinary fieldwork, environmental
testing, agricultural goods, etc. [17]. Lateral flow
assays are a mature technology, and well-proven for
maintaining assay quality, sensitivity, specificity,
reproducibility, and stability for mass production
and market acceptance.
The sensor-based LFA has wide applications with

more advantages. In the recent decades, the rapid
growth of field-enabled sensor technology, colloidal
gold nanoparticles (AuNPs) properties such as the
small size, excellent optical and material properties,
stability, and high surface area makes them suitable
candidates. Another main advantage is the synthesis
methods are well-established for size control gold
nanoparticles based sensing technology [18,19].
Lateral flow biosensors with colloidal AuNPs detect
analytes such as proteins, nucleic acids, heavy
metals, pesticides, chemical and biological agents at
very low concentrations with high biocompatibility
and affinity for biomolecule conjugates [20]. Thus,
simple, sensitive, and easily applied localized sur-
face plasmon resonance (LSPR) based platforms and
lateral flow immunoassay (LFIA) strips are very
attractive tools in the field [21]. AuNPs based LSPR
sensors can easily detect signals in real-time
through spectral shifts and help miniaturize assay
platforms because highly localized sensing is
possible. Since LSPR based sensors can be very
sensitive and specific, they have been widely
applied as biosensors in fields such as disease
diagnosis; and environmental, food, and agricultural
safety monitoring [22e25].
Lateral flow immunoassay strips are the most

widely used biosensor worldwide due to their
speed, simplicity, and low cost. It is also highly user-
friendly, allowing direct visual checks without
requiring additional equipment [26,27]. The present
study targeted ractopamine as an model for veteri-
nary drugs to confirm detection performance for the
developed sensors. Ractopamine promotes pork
leanness but has been banned in many countries
due to drastic health and behavioral problems in
animals [28]. We also checked whether sensing

efficiency met USFDA ractopamine residual toler-
ance criteria (pork muscle: 0.05 ug/mL) [29], using
the standard solution and spiked pork sample.
Cross-comparison quantitative and qualitative ana-
lyses using portable sensor devices were used to
assess field application, and we consequently pro-
posed a new food safety detection system incorpo-
rating two sensor formats for rapid diagnosis of
animal drugs in food.

2. Materials and methods

2.1. Reagents and materials

Gold (III) chloride trihydrate (HAuCl4, �99.9%),
(3-Aminopropyl) triethoxysilane (APTES, �98.0%),
and ractopamine hydrochloride were purchased
from SigmaeAldrich (St. Louis, MO, USA). Triso-
dium citrate dihydrate was purchased from Kanto
Chemical Co., Inc. (Tokyo, Japan). Anti-ractopamine
monoclonal antibody (RAC-Ab) produced in mice
and ractopamine-BSA were purchased from Crea-
tive Diagnostics (New York City, NY, USA). All
other chemicals used were analytical grade. The
absorbent pad, backing card, nitrocellulose mem-
brane, sample pad, and conjugation pad used to
fabricate LFIA strips, were purchased from Bore Da
Biotech Co. Ltd. (Seongnam, Korea).

2.2. Uniformly sized gold nanoparticle synthesis

Two differently sized gold nanoparticles (AuNPs)
were synthesized following the method previously
reported with minor modifications to accommodate
different laboratory conditions [30]. To synthesize
15 nm AuNPs, 2.2 mM sodium citrate solution
(150 mL) was taken in a dried three-necked flat-
bottom flask and was heated to 100 �C under
vigorous stirring. When the solution started to boil,
25.0 mM HAuCl4 solution (1.0 mL) was added
quickly and reacted for 10 min, until the solution
changed from yellow to wine-colored. Synthesized
nanoparticles (NPs) were used to fabricate LSPR
sensor chips.
To synthesize 35 nm AuNPs, after the synthesis of

15 nm AuNPs and in the same flask, the solution
was cooled to 90 �C. Then, 60.0 mM sodium citrate
solution (1.0 mL) and 25.0 mM HAuCl4 (1.0 mL) was
added and reacted for 30 min. Synthesized NPs
were used to fabricate LFIA strips. Fabricated AuNP
size and morphology were analyzed using field-
emission transmission electron microscopy (FE-
TEM; JEM2100F, JEOL Ltd., USA), and the plasmon
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absorbance peak was verified by UVevis spectros-
copy (V-770, JASCO International Co., Ltd., Japan).

2.3. LSPR sensor chip fabrication for ractopamine
detection

We fabricated LSPR sensor chips following a
previously reported method with minor modifica-
tions [31]. First, 5.0 � 0.8 cm glass substrate was
subjected to ultrasonic treatment for 15 min in
methanol to remove any surface impurities, then
washed with distilled water several times. Cleaned
substrates were soaked in 0.5% APTES (a linker to
functionalize amines on the glass substrate) and
reacted at 60.0 �C for 1 h. Amine-functionalized
glass substrates were washed with distilled water at
least five times to remove excess APTES, soaked in
15 nm AuNP solution, and reacted overnight at
room temperature. Transparent wine-colored glass
substrates were finally fabricated when AuNPs were
successfully attached by self-assembly.
Ractopamine antibodies were fixed on AuNP sur-

faces to produce ractopamine-sensitive LSPR sensor
chips. Pre-fabricated LSPR sensor chips were reacted
with 600.0 mL RAC-Ab dissolved in phosphate buffer
(PB), pH 7.4. RAC-Ab solutions were prepared at
various concentrations (0, 0.001, 0.1, 1.0, 10.0, and
100.0 mg/mL) and used to verify optimum antibody
concentration for detection. LSPR sensor chips were
soaked at the optimized concentration and various
reaction times (0, 5, 10, 15, 20, 25, and 30 min) to
identify the optimum reaction time for antibody
saturation. Results were analyzed with UVevis spec-
troscopy, measuring absorbance over 400e700 nm to
check peak shift for the LSPR sensor chip.

2.4. LFIA strip fabrication for ractopamine
detection

We titrated 35 nm AuNPs to pH 9.0 using
0.25 M K2CO3 solution with various RAC-Ab
quantities (0, 1.0, 1.5, and 2.0 mg/mL) on 5.0 mL
AuNP solution and reacted in a rotator for 30 min at
room temperature. Reacted solutions were centri-
fuged (6,000 rpm, 30 min, 4 �C) and the supernatant
was removed to eliminate non-reacted antibodies.
Subsequently, 1% BSA (blocking buffer), was added
and reacted by rotator for 30 min to suppress non-
specific reactions. The blocked solution was subse-
quently centrifuged (10,000 rpm, 15 min, 4 �C) and
the supernatant was removed. Blocking and
centrifugation were repeated twice, and RAC-Ab
conjugated AuNPs were finally collected through

phosphate buffer (PB) solution. Absorbance for bare
and RAC-Ab conjugated AuNPs was measured
using UVevis spectroscopy to confirm the synthesis
of RAC-Ab coated AuNPs.
Lateral flow immunoassay strips comprise an

absorbent pad, NC membrane, conjugation pad,
and sample pad. Conjugation pads, comprising
glass fibers, were pretreated with 0.05% polyvinyl
alcohol (PVA) and Tween 20 solution for 12 h, fol-
lowed by drying overnight to remove non-specific
binding before assembling LFIA sheets. RAC-Ab
conjugated AuNPs were dropped on a completely
dried conjugation pad and dried overnight at room
temperature in a desiccator. Each 1.0 mg/mL anti-
IgG and ractopamine-BSA was dispersed on NC
membrane control (C) and test (T) lines, respec-
tively, using the dispenser. Finally, the absorbent
pad, NC membrane, conjugation pad, and sample
pad were laminated on the backing card in regular
sequence and then to 4.0 mm wide. Fabricated strips
were kept at room temperature in a desiccator
before use.

2.5. LSPR sensor chip and LFIA strip sensitivity to
ractopamine

Fabricated LSPR sensor chips with optimized
RAC-Ab concentration were reacted for 15 min with
600.0 mL various concentration ractopamine (1.0 fg/
mL to 100.0 ng/mL) dissolved in 0.01 M PB with pH
7.4. Chips were then washed with PB, and LSPR
peak intensity was analyzed by measuring absor-
bance between 400 e 700 nm using UVevis spec-
troscopy. Fabricated LFIA strips were reacted for
10 min by soaking in 150.0 mL optimized running
buffer with various ractopamine concentrations.
Lines generated as the solution flowed were visually
checked, and C and T line intensity for each con-
centration were photographed and analyzed using
ImageJ software.

2.6. LSPR sensor chip and LFIA strips selectivity to
ractopamine

To confirm ractopamine specificity and cross-
reactivity for the developed LSPR sensor chips and
LFIA strips, we crosschecked ractopamine detection
and various interferences, including ractopamine
analogs (epinephrine and clenbuterol), enrofloxacin,
and creatine at 10 ng/mL. Peak shift was analyzed
using UVevis spectroscopy, and C and T line in-
tensity after reaction with each interference solution
using the ImageJ program.
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2.7. Developed sensors applied to real pork samples

We used pork samples to check whether ractop-
amine could be detected in actual food. Pork sam-
ples purchased at the local mart were ground with a
mixer, then 1.0 g homogenized pork samples were
spiked with various ractopamine concentrations and
stored at 4 �C for 1 h. Subsequently, 10.0 mL PB was
mixed into the spiked pork samples, followed by
centrifugation (8,000 rpm, 4 �C for 20 min), and su-
pernatant (pork extract containing ractopamine in
various concentrations) collected. We then reacted
LSPR sensor chips and LFIA strips with pork extract
using the detection process described above.

3. Results and discussion

3.1. LSPR sensor and LFIA strip ractopamine
detection principle

Fig. 1 shows the fabrication and principal mech-
anism for ractopamine detection by LSPR sensor
chips and LFIA strips. The LSPR sensor chip was
coated with AuNPs on a glass substrate in a form
that could be easily applied in the common cuvette.
Antibodies were subsequently fixed to the LSPR
sensor chip surface to functionalize it then the as-
sembly was treated with ractopamine standard so-
lution and spiked pork extract. Sensing performance

Fig. 1. Schematic illustration of LSPR sensor chip (A) and competitive LFIA strips (B) for detection of ractopamine.
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was identified by LSPR peak shift induced by local
refractive index changes due to biomolecular in-
teractions at AuNP surfaces. Since these bio-
molecules have a higher refractive index than the
buffer solution, molecular binding to AuNPs causes
LSPR spectrum red-shift (Fig. 1A) [32].
The LFIA strips for this study were fabricated in a

competitive assay format, which requires drying the
antibody step at the sample site, accurate control
over antibody quantity, and produces a consistent
enhanced color signal proportional to antigen (rac-
topamine)-antibody (ractopamine specific antibody)
response [33]. Ractopamine antibody conjugated
AuNPs bind to ractopamine conjugated BSA
immobilized on the T line. This binding site will
only be free when there is no ractopamine in the test
sample, hence the red T line is occurred and
designated as the negative result. On the other
hands, the positive result is shown by a competitive
activity. When ractopamine existed in the pork
sample, ractopamine competed with the immobi-
lized ractopamine-BSA on T line with limited NP
binding sites. Thus, T line is observed blurred red
band or no band when ractopamine concentration
contained high enough. With the sample continued
to flow along the strip, the excess NP probe was
combined with the anti-mouse IgG immobilized on
C line, resulting in a red band. If the red C line is not
observed, the test will be considered invalid [34,35].
Fig. 1B shows this mechanism. Very few sensors
have been developed with AuNPs to detect food
contaminants [7], hence the proposed sensors were
highly efficient compared to others.

3.2. LSPR sensor chip and LFIA strips for
ractopamine detection

3.2.1. Synthesized AuNPs characterization
We synthesized AuNPs from HAuCl4 reduced by

sodium citrate using the Turkevich/Frens reaction
system. This nanomanufacturing method is highly
reproducible, expedient, and cost-effective with low
environmental impact [36], generating mono-
disperse, spherical, and surface functionalized
AuNPs in aqueous solutions [36,37]. In particular, it
was very important to synthesize specific-sized
nanoparticles to improve biosensor performance,
since AuNP size affects NP optical properties [38].
Previously studies have shown that smaller-sized
AuNPs in LSPR sensor chips produced more hot-
spots that can change surface charge, resulting in
more sensitive LSPR signals [39]; whereas it would
be difficult to visually identify the detection area
signal if the AuNPs are too small in the LFIA strip.
For both cases, larger AuNPs (>50 nm) cause

unstable antigen and antibody binding due to steric
hindrance, and hence AuNP aggregation. Previous
studies have identified that 30e40 nm AuNPs were
highly effective [40,41]. Therefore, in this study, two
sizes of AuNPs suitable for each sensor were syn-
thesized and then characterized.
Fig. S1 shows that the AuNPs used to fabricate the

LSPR sensor chip and LFIA strip sensor were
characterized using FE-TEM and UVevis spectra.
AuNPs used for LSPR sensor chip production
averaged 15.07 ± 1.72 nm (Fig. S1A, D); whereas
AuNPs used for LFIA strips increased size by
adding sodium citrate, to approximately 35.13 ±
3.74 nm (Fig. S1B, E). Synthesized AuNPs
commonly have d-spacing z 0.23 nm (Fig. S1C)
consistent with Au (111) crystal plane [42]. AuNPs
used for LSPR chip sensors and LFIA strips
exhibited absorption peaks at 519 and 528 nm
respectively, which were right-shifted as NP size
increased (Fig. S1F) [43].

3.2.2. LSPR sensor chip optimization
Fig. 2 shows that synthesized 15 nm AuNPs were

coated on the glass substrate surface followed by
optimized antibody concentration and reaction
time for antibodies to conjugate with the AuNPs to
form antibody-functionalized LSPR sensor chips.
Optimal antibody concentration was essential
because the antibodies are the most important
factor for immunosensor sensitivity and specificity
[44].
Fig. 2A shows antibodies (1 ng/mL to 100 mg/mL)

reacted with LSPR sensor chip. LSPR peak shift was
measured to determine optimal concentration. The
wavelength shift mechanism in LSPR is mainly
based on analyte-surface binding interactions [45].
Although 1 mg/mL did not cause an observable peak
shift, 10 mg/mL caused a significant peak shift. The
peak shift for 100 mg/mL was 2.28 times higher than
10 mg/mL, but such high antibody concentration
caused partial aggregation on the sensor chip sur-
face, which can cause unstable assay conditions.
Thus, approximately 10 mg/mL was the optimal
antibody concentration for chip development.
Fig. 2B confirms optimal reaction time of 20 min

for attaching the maximum antibody to the LSPR
sensor chip surface and it was observed that as time
increased, the LSPR peak increased significantly up
to 20 min, but became saturated with no further
significant changes over 20 min. Thus, the LSPR
sensor chip to detect ractopamine was developed by
reacting 10 mg/mL antibodies onto the glass strip
coated with AuNPs for 20 min. Fig. 2C shows the
optimized LSPR sensor chip reacted with ractop-
amine, confirming the UVevis spectrum.
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3.2.3. LFIA strip optimization
We wanted to develop LFIA strips to detect rac-

topamine using a competitive assay format. There-
fore, we optimized antibody concentration
conjugated to AuNPs, blocking buffers, and running
buffers to improve assay sensitivity. Four different
antibodies concentrations (0, 1.0, 1.5, and 2.0 mg/mL)
were used and attached to AuNPs. Fig. S2A shows
that AuNPs with attached antibodies exhibited red
shifted in UV spectra due to refractive index changes
on the particle surface, but the redshift did not differ
significantly as antibody concentration increased.
The control line tended to be visible, strong, and
similar intensity for all strips reacted with 0e10 ng/
mL ractopamine standard solution; whereas no line
was visible in the absence of antibodies. Fig. 2D
shows a strong T line occurred when no ractopamine
was present (0 ng/mL), becoming more visible with
increasing antibody concentration. However, the T
line was highly indicated for positive ractopamine
solution (10 ng/mL) and antibody concentration
>1.5 mg/mL due to binding AuNPs conjugated anti-
bodies to ractopamine-BSA immobilized to the T
line. In contrast, the T line of 1.0 mg/mL antibody
concentration was clear because all antibodies were

saturated with ractopamine, leaving no free antigen-
binding sites. Therefore, that the detection limit can
be changed by varying antibody concentration, and
detection sensitivity decreases with increasing anti-
body concentration. Therefore, we chose optimum
antibody concentration ¼ 1.0 mg/mL.
We also considered the effects of blocking and

running buffers. Well-optimized blocking and
running buffers are important LFIA parameters. The
blocking buffer can reduce non-specific binding and
hence improve detection sensitivity [26]. Antibody
conjugated AuNPs were blocked using 10 mM PB,
10 mM phosphate buffer saline (PBS), and 20 mM
Borate (pH 9.0) blocking buffers, each containing 1%
BSA. Fig. S2B compares PB, PBS, and borate buffer
effects for various ractopamine concentrations (0, 1,
and 10 ng/mL). The blocking buffer made by 20 mM
borate buffer enhanced T line intensity, creating a
distinct visually detectable line. Fig. S2C shows
optimization of NaCl concentration in running
buffer. Generally, T line intensity increases with
increasing NaCl concentration, but antibody conju-
gated AuNPs were not fully elevated and remained
on membrane and conjugation pads at 300 mM
NaCl. Therefore, we selected 150 mM as optimal

Fig. 2. Optimization of LSPR sensor chips and LFIA strips (A) Effect of the RAC-Ab with different concentrations (1 ng/mLe100 mg/mL) and (B)
reaction time with 10 mg/mL of antibody for LSPR sensor chip (C) Detection of ractopamine using optimized LSPR sensor chip (D) Effect of the RAC-
Ab with different concentrations for LFIA strips.
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NaCl concentration for the running buffer consid-
ering the clean background and strong signal. These
parameter optimizations helped develop sensors
with acceptable reproducibility.

3.3. Sensitivity assay for LSPR sensor chip and
LFIA strips using standard solutions

AuNPs on the glass slide surface self-assembled to
fabricate the LSPR chip. As reported previously [46],
this was mainly due to charge interaction between
AuNP citric acids and amine groups on the func-
tionalized glass chip [46]. The LSPR chip was func-
tionalized by reacting 10 mg/mL antibodies for
20 min. PB with pH 7.4 was used to prepare rac-
topamine standard solution ranging from 1 fg/mL to
100 ng/mL that was subsequently reacted on specific
chips.
Fig. 3A shows no significant peak shift for 1 fg/mL

standard solution, but linear LSPR peak shift
(R2 ¼ 0.9946) occurred as ractopamine increased
from 10 fg/mL to 1 ng/mL. Limit of detection (LOD)
for determining ractopamine by LSPR sensor chip
was calculated as

LOD¼k� Sb=m; ð1Þ
where k ¼ 3, corresponds to 98.3% confidence level;
Sb is standard deviation from blank signal; and m is
the calibration curve slope [47]. Thus,
LOD ¼ 1.19 fg/mL.
After optimizing antibody concentrations and re-

action conditions, we verify sensitivity to ractop-
amine for the LFIA strip. There are two ways to
express LOD for LFIA strips: visually or using cali-
brator equipment. Optimized running buffer was
loaded with ractopamine concentrations 0, 0.5, 1, 5,
10, 25, 50, 75, and 100 ng/mL.
Fig. 3B shows that the T line is prominently visible

up to 1 ng/mL, but significantly blurred for at 5 ng/
mL and disappeared completely from 10 ng/mL.
Thus, visually determined range for LFIA strips z
0e10 ng/mL ractopamine and visible LOD

(vLOD) ¼ 5 ng/mL. Fig. S3 shows ractopamine
detection results analyzed using the ImageJ pro-
gram. Intensity ratios between the T and C lines
were calculated by removing the background value.
The LFIA strip achieved very narrow dynamic range
z 3e10 ng/mL (Fig. S3B) with linearity R2 ¼ 0.9968
and LOD ¼ 2.27 ng/mL. Thus, LSPR and LFIA re-
sults verify that ractopamine can be successfully
detected to USFDA residual tolerances.

3.4. Selectivity assay for LSPR sensor chip and
LFIA strips

Food samples, such as pork, have very complex
matrixes, which is a major factor that can affect
ractopamine signal and sensor reliability [48]. Fig. 4
shows sensor selectivity for ractopamine was veri-
fied by monitoring detection results under various
interferences (epinephrine, clenbuterol, enro-
floxacin, and creatine) at 10 ng/mL concentration.
Fig. 4B shows peak shift for LSPR sensor before and
after 10 mg/mL antibody response to interferences.
The peak shift for ractopamine was sharp, whereas
the interferences exhibited a similar peak shift to the
negative sample, i.e., no significant cross-reactivity
was exhibited. Fig. 4C and D shows ractopamine
interferences using optimized LFIA strips. Only
samples with ractopamine did not show color on the
T line, whereas the T line was always visible in the
presence of interferences. Visual and ImageJ anal-
ysis confirmed similar results to negative samples.
Therefore, the sensors developed in this study were
sufficiently robust to binding and achieved high
selectivity. Thus, the developed biosensors are
suitable for detecting food contaminants in the field.

3.5. Real ractopamine sample detection

Pork samples spiked with various ractopamine
concentrations were monitored to validate the
fabricated optimized LSPR and LFIA devices’ prac-
ticality for ractopamine detection and screening in

Fig. 3. Detection of ractopamine using (A) LSPR sensor chip and (B) LFIA strips with various concentrations of ractopamine standard solution.

596 JOURNAL OF FOOD AND DRUG ANALYSIS 2022;30:590e602

O
R
IG

IN
A
L
A
R
T
IC

L
E



real samples. Fig. 5 shows that the LSPR sensor chip
detected 0.1 fg/mL to 100 ng/mL, and the LFIA strips
detected 0 ng/mL to 100 ng/mL ractopamine con-
centrations. Fig. 5A confirms LSPR sensor chip line-
arity R2¼ 0.9993 and LOD¼ 0.3 fg/mLwithin 1 fg/mL
to 1 pg/mL ractopamine concentration. Table 1
shows excellent ractopamine recovery for three
samples (93e108%). Previously developed sensors
reported sensitivity atmicro and nanogram levels [7],

Fig. 4. Selectivity test to ractopamine and interferences at a concentration of 10 mg/mL (A) chemical structures of the ractopamine and interferences (B)
LSPR peak shift response of LSPR sensor chip upon the addition of interferences (C) Image of the test strips with ractopamine and interferences, and
(D) the normalized T/C ratio of LFIA strips produced by ImageJ program.

Fig. 5. Detection of ractopamine in pork extract using optimized LSPR sensor chip (A), and LFIA strips (B).

Table 1. Result of the spike recovery test for the optimized LSPR sensor
chip.

Spiked
(ng/mL)

Detected
(ng/mL)

Recoverya

(%)
RSDb

(%, n ¼ 5)

4.0 � 10�6 3.72 � 10�6 108 22.2
5.0 � 10�5 5.10 � 10�5 98 14.1
2.5 � 10�4 2.71 � 10�4 92 13.8
a Recovery (%) ¼ Detected/Spiked � 100.
b RSD, Relative standard deviation (%) ¼ SD/mean � 100.
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whereas the proposed sensor achieves sensitivity at
pico and femtogram levels. Thus, the developed
sensor is highly sensitive, portable, and can detect a
diverse range of food contaminants in pork meat.
Fig. 5B shows LFIA strips results after reacting with
ractopamine spiked pork samples for 10 min,
achieving vLODz5 ng/mL. However, the analysis is
difficult due to the very narrow linear range as dis-
cussed above regarding quantitative analysis using
LFIA strips. These results confirm that both sensors
can detect ractopamine as sensitively as a standard
solution in real samples. Table 2 compares detection
levels for previously reported sensors with the pro-
posed sensor developed in this study.

4. Conclusion

Veterinary drugs administered in food-producing
animals generate drug residues in all the animal-
derived food products that pose potential health
hazards to consumers. The immuno-colloidal
AuNPs-based LSPR sensor chip and LFIA strips
developed here will be highly beneficial to detect
ractopamine, as a model drug residue, in pork meat
samples on-site with significant sensing perfor-
mance. The LSPR sensor chip achieved very low
LOD ¼ 1.19 fg/mL, whereas the LFIA strip achieved
LOD ¼ 2.27 ng/mL. The LSPR sensor chip exhibited

sensitivity of 4.20 � 106 times larger than LFIA,
detect very low ractopamine concentration in
approximately 30 min whereas the LFIA strip de-
tects narrow range of ractopamine with the naked
eye in just 5e10 min. The two sensors are comple-
mentarily able to rule out each other's shortcomings
perfectly and also overcomes limitations such as
sensitivity and requirement of more precise analysis
systems lending it to be used as field inspection
sensor. Both sensors detect and screen ractopamine
with sensitivity sufficiently cover USFDA ractop-
amine residual tolerances. We expect that the
developed sensor will open many innovative ap-
proaches and advance the fabrication of on-site
sensors to detect specific food additives.
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Table 2. Comparison of different methods used to determine ractopamine.

Method Sample LOD Linear range Reference

QuEChERS/LC-MS Pork 1.5 mg/kg 2.5e20 mg/kg [11]
HPLC Beef 0.01 mg/mL 0.05e2.5 mg/mL [49]
GCeMS Swine liver and urine 0.5 ng/mL e [13]
ELISA Chicken, Swine, Pettitoes 0.35 ng/mL 2e512 ng/mL [50]
SPR Swine urine 0.09 ng/mL 0.3e32 ng/mL [51]
Chemiluminescent (CL) based LFIA Swine urine 0.20 ng/mL 0.50e40 ng/mL [52]
Colorimetric Swine feed 0.003 ng/mL 0.03e150 ng/mL [53]
LSPR Pork 1.19 fg/mL 10 fg/mL e 1 ng/mL This work
LFIA Pork 2.27 ng/mL 3e10 ng/mL This work
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Appendix

Fig. S1. Characterization of AuNPs. (A, D) FE-TEM analysis and size histogram of 15 nm AuNPs, and (B, E) 35 nm of AuNPs. (C) Crystalline planes
(111) corresponding to a gold FCC structure. (F) UV-vis absorbance spectra of 15 nm and 35 nm AuNPs.
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Fig. S2. Optimization of LFIA strip for detection of ractopamine. (A) UV-vis spectrum of anti-ractopamine conjugated AuNPs. (B) Effect of the various
type of blocking buffer. (C) Effect of the NaCl concentration in running buffer.

Fig. S3. (A) Image of the LFIA strips with the increasing ractopamine concentration. (B) Relationship between normalized T/C ratio and the rac-
topamine concentration. The T/C ratio was calculated by T line intensity over C line intensity. T and C line intensity was measured using the ImageJ
program.
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