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Abstract

Thermal desorption-electrospray ionization tandem mass spectrometry (TD-ESI/MS/MS) was used to characterize the
residual pesticides that were collected from the surface of a grape with metallic sampling probes. Fungicides, insecticides, and
miticides were detected, where results were validated by simple solvent extraction followed by gas chromatography tandem
mass spectrometry and liquid chromatography tandem mass spectrometry analyses. To explore the distribution of pesticide
residues on grape surfaces, 149 locations of a grape surface were collected and followed by TD-ESI/MS/MS analysis. The
molecular cartography was then generated from analysis of residual pesticides on the grape surface in 3D.

Keywords: Grape, Molecular cartography, Residual pesticide, Sampling probe, Thermal desorption-electrospray ioni-
zation tandem mass spectrometry

1. Introduction MSI is therefore a promising technique for medical
research and clinical practice because it provides

ver the last few decades, mass spectrometry comprehensive molecular information and visuali-
O imaging (MSI) has become a useful tool for zation of analyte spatial distributions on thin
exploring the spatial distribution of biomolecules ~Sample sections [8—10]. MSI is also applied in
(such as metabolites, lipids, peptides, proteins, and ~ Pharmaceutical industry to visualize the distribu-
glycans) [1-5] in the tissue samples without inten- tions of medicine throughout in situ sample sections

sive sample preparation like chemical labeling [6,7]. [11-13].
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Secondary ionization mass spectrometry (SIMS)
and matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) are the two most
commonly used MSI techniques [1,14,15]. SIMS
detects organic and inorganic compounds with a
very high spatial resolution, but is optimal for
detecting molecules or elements with smaller
masses. Conversely, MALDI-TOF can detect larger
biological compounds but suffers from a relatively
lower special resolution [15]. MALDI-MSI is per-
formed in microprobe mode where the ion signals
of the molecules detected from each laser spot are
recorded individually. A thin tissue sample with an
area of 5 mm? typically requires an acquisition time
of several hours even with the use of a high-fre-
quency pulsed UV laser. In addition, homogeneous
application of the matrix on the sample section is
always time-intensive and heavily dependent on
user's experiences.

Ambient ionization mass spectrometry (AIMS) is
an emerging technique that can rapidly analyze
samples under atmospheric conditions. AIMS facili-
tate direct, rapid, real-time, and high-throughput
analyses of a plethora of compounds from various
surfaces with litle or no sample pretreatment.
Consequently, several AIMS techniques have been
applied in MSI studies. Desorption electrospray
ionization (DESI) has been used to construct molec-
ular cartography of biological tissues such as mouse
pancreas, rat brain, metastatic human liver adeno-
carcinoma, human breast, and canine abdominal
tumor [16—19]. The capability of electrospray laser
desorption ionization (ELDI) has been proved to
profile and image samples like painting and biolog-
ical tissue sections [20,21]. Laser ablation electrospray
ionization (LAESI) has been used for molecular im-
aging and depth profiling of water-rich leaf tissues
[22], with recent applications is the imaging of small
metabolites and lipids in rat brain tissues and in situ
cell-by-cell imaging of plant tissues [23]. Low tem-
perature plasma probe (LTP) has been used image
artworks including paintings and calligraphy letters
[24]. Probe electrospray ionization (PESI) has been
used to image mouse brain tissue [25].

There are many analytical and operational bene-
fits to use AIMS rather than MALDI-TOF for MSI
studies. AIMS-MSI requires minimal or no sample
pretreatment; in contrast, homogenous matrix
deposition on tissue samples is critical for MALDI-
MSI. Moreover, desorption and ionization in AIMS
and MALDI-TOF are performed under ambient
conditions and vacuum conditions, respectively.
These features of AIMS will enable easier and faster
MSI analysis compared to MALDI-TOF. Although
AIMS techniques have demonstrated promising

analytical performance in two-dimensional (2D)
molecular imaging, no information on the distribu-
tion of the targeted chemical compounds on the
sample surface has been reported. The molecular
cartography on the sample surface allows for addi-
tional dimension during the visualization of the
distribution of the targeted compounds.

Thermal desorption-electrospray ionization mass
spectrometry (TD-ESI/MS) combined with probe
sampling has been developed to rapidly detect trace
compounds on sample surfaces within seconds
[26—29]. Analytes such as pesticides on the fruit
surfaces, explosives on the baggage pieces, and
phthalates on plastic objects were collected by
sweeping a metallic probe across those solid surfaces
for a short distance (ca. 0.3—2 cm), although liquid
samples can be collected simply by dipping and the
probe in liquids. The probe was then inserted in a
preheated oven to thermally desorb the absorbed
analytes. A nitrogen gas stream delivered the des-
orbed analyte molecules into an electrospray plume
generated from a capillary-flowed acidic methanol
solution. Analyte molecules then reacted with
charged solvent species generated in the ESI plume
to form analyte ions. TD-ESI tandem mass spec-
trometry (TD-ESI/MS/MS) has been used to detect
trace pesticides residues on the surfaces of red bell
pepper and tomatoes, where results were compara-
ble with those achieved by QuEChERS followed by
conventional mass spectrometric analyses [30].

With its advantages of easy operation and rapid
sample analysis, probe sampling combined with TD-
ESI/MS/MS can efficiently elucidate the spatial dis-
tribution of residual pesticides on the surfaces of fruits
with important food safety applications (among other
uses). Herein, trace residual pesticides on the surfaces
of locally purchased grapes were characterized via
AIMS-MSI using probe sampling followed by TD-
ESI/MS/MS analysis. The animated molecular
cartography were constructed using data on pesticide
ion signals to visualize the distribution of residual
pesticides on grape surfaces. The detection of pesti-
cide residues on grape surfaces by TD-ESI/MS/MS
was qualitatively validated by simple solvent extrac-
tion followed by gas chromatography tandem mass
spectrometry (GC/MS/MS) and liquid chromatog-
raphy tandem mass spectrometry (LC/MS/MS).

2. Experimental
2.1. Chemicals and reagents
Hyper-grade methanol (CH;OH) and acetonitrile

(CH3CN) were purchased from Merck (Darmstadt,
Germany). Acetic acid (CH;COOH), and
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ammonium acetate (CH;COONH,) were obtained
from J.T. Baker (Phillipsburg, NJ, U.S.A.). Pesticide
standards were purchased from Sigma-Aldrich (St.
Louis, MO, U.S.A.). Distilled deionized water (pu-
rified with PURELAB Classic UV from ELGA,
Marlow, UK) was used for sample preparation.
Fresh grapes were purchased from a local
supermarket.

2.2. TD-ESI tandem mass spectrometric analysis

Specific details of the TD-ESI/MS setup can be
found in our previous publications [29]. Both solid
or liquid samples were easily collected using sam-
pling probes each with a handle and a nichrome
inoculating loop (i.d. 1.5 mm, o.d. 2.7 mm). Before
sampling, the probe tip was heated a handheld
butane gas torch to remove any previous samples,
where the probe tip was then cooled in a methanol
solution. Analytes on each solid sample were
collected by sweeping a probe across the sample
surface for a defined distance according to the
optimized parameters. To explore the distributions
of residual pesticide residues on grape surfaces, the
grape being samples was penetrated with a metal
wire and suspended between two rods. After sam-
pling, the sample spot was marked by a high-lighter
to avoid repetitive sampling (Fig. 1a), where each
sample spot was marked with a highlighter after
sampling to avoid re-sampling (Fig. 1b). Analytes on
each grape - such as residual pesticides - were
collected by sweeping a sampling probe across the
grape surface from 3 mm (Fig. 1a). The sampling
process was repeated 149 times with the sampling
probe (as per the aforementioned cleaning proced-
ure) to collect analytes located on different areas of
the grape surface. To characterize the analytes on
each sampling probe, the probe was inserted into a
TD-ESI source so that any adsorbed analytes were
thermally desorbed into a preheated oven (280 °C)
(Fig. 1c). A heated nitrogen stream (5 L/min) was

(a) Analytes sampling (b) Mark on the surface
with a metallic probe of grape

(c) Data acquisition by
TD-ESI/MS/MS

flowed from the top of the TD-ESI source to deliver
thermally desorbed analytes into an ESI plume. The
electrospray solution comprised of a methanol/
water solution with 0.1% acetic acid (40:60:0.1, v/v/v)
that was flowed through a fused-silica capillary (100
um i.d.) at a flow rate of 160 uL/h. A high voltage (4.5
kV) was applied to the electrospray solution as it
flowed through the capillary to induce ESI at the
capillary tip of via solution condition. The desorbed
analytes were ionized through reactions with
charged solvent species produced in the ESI plume.
The TD-ESI source was coupled to a triple quad-
rupole mass analyzer (Ultivo, Agilent, U.S.A.) for
MS and MS/MS analyses in positive ion mode.
Qualitative determination of residual pesticide was
based on the detection of characteristic analyte ion
pairs generated in multiple reactions monitoring
(MRM) mode, where MRM parameters were opti-
mized for these pesticide ion pairs. Two precursor-
product ion transitions were monitored for each
pesticide to assure highly accurate pesticide identi-
fication. The MRM parameters of 558 transitions for
279 pesticides were established for the TD-ESI/MS/
MS analysis.

2.3. Molecular cartography

Molecular cartography of the pesticide residues
detected on grape surface were generated using the
Blender (v2.82) and Adobe Photoshop (CC) software
(Fig. 1d). Blender - an open-source 3D computer
graphics software - was used to create a 3D grape
model. Afterwards, the 3D model was exported as a
Blender UV map to Photoshop for further object
texturing with a color gradient based on the in-
tensity of pesticide ion signals. The intensities of
detected pesticide ion signals were normalized to
compensate for signal intensity variations due to
heterogeneous pesticides application and detection
instabilities. Each real grape sample was divided
into four pre-defined regions with 149 individual

(d) Molecular cartography

-
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Fig. 1. Schematic illustration of the analysis of residual pesticides collected from a grape surface via probe sampling followed by TD-ESI/MS/MS

analysis.
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sampling cells, where each cell was chromatically
visualized using a color gradient from gray to deep
red (0~100%) based on the relative ion signal in-
tensities of detected pesticides.

2.4. Evaluation of TD-ESI/MS/MS parameters and
analytical capabilities

Two pesticide standards (carbofuran and
methomyl) were used to evaluate the capability of
TD-ESI/MS/MS combined with probe sampling for
rapidly detecting residual pesticides on sample
surface. Two microliters of pesticide solutions with
varying concentrations (0.5, 1, 5, and 10 pg/mL) were
deposited onto a glass slide so that each solution
occupied a circular area with a radius of approxi-
mately 1.5 mm. After the deposited droplets were
air-dried, the area was gently touched with a
metallic probe to collect samples. The analytes
adsorbed on the probe was then analyzed to eval-
uate repeatability, detection limit, and recovery of
TD-ESI/MS/MS for trace pesticides via triplicate
analyses (Fig. S1).

2.5. Qualitative TD-ESI/MS/MS characterization
of residual pesticides on grapes

After optimizing the TD-ESI/MS/MS parameters
for pesticide detection, the capability of the tech-
nique for real sample analysis was tested on the
locally purchased grape bunch. The grapes in
different locations throughout the bunch were
collected and analyzed. Four grapes - two from the
outer layer and two from the inner layer of the
bunch - were picked and analyzed using TD-ESI/
MS/MS, GC/MS/MS, and LC/MS/MS, respectively.
To collect analytes, a sampling probe was swept
across the surface of each grape for a distance of 2
cm and then inserted into the TD-ESI source for
further analysis. Each grape was analyzed in
triplicate.

2.6. Qualitative GC/MS/MS and LC/MS/MS
analyses

Results from TD-ESI/MS/MS screening of pesti-
cides residues were validated using GC/MS/MS and
LC/MS/MS. Since the grape surface served as the
target residual pesticides, traditional solvent
extraction procedure was substituted by simple
solvent extraction to avoid interferences from grape
pulps and seeds. Therefore, pesticide residues were
extracted from the grape surface by rinsing the
grape 10 times with 1 mL acetonitrile. The extract

solution was then dried and reconstituted in 100 pL
methanol (concentrated to ten times) and divided
into two aliquots for GC/MS/MS and LC/MS/MS
analyses. The GC/MS/MS (GCMS-TQ8040, Shi-
madzu) system was equipped with an auto-injector,
Rtx-5MS column (30 m x 0.25 mm i.d., 0.25 um-thick
film) and Quick-DB GC-MS/MS residual pesticides
database to separate and detect residual pesticide in
the extract. The injection volume was 1 pL. The GC
oven temperature was initially set at 60 °C, main-
tained for 1 min, increased by 25 °C/min from 60 to
160 °C, by 4 °C/min from 160 to 240 °C, by 10 °C/min
from 240 to 290 °C, and kept at 290 °C for 10 min.
LC/MS/MS analyses were conducted using a Shi-
madzu LC/MS 8045 system equipped with a binary
pump, vacuum degasser, auto-sampler, column
oven, Shim-pack GIST C18 column (3 pm, 4.6 x 150
mm) and a triple quadrupole mass analyzer. The
HPLC mobile phase consisted of solvent A (10%
aqueous methanol with 5 mM CH3;COONH,) and
solvent B (90% aqueous methanol with 5 mM
CH3COONH,). During HPLC analysis, the mobile
phase gradient was set as 0% B and held for 0.2 min,
increased to 40% B for 0—0.8 min, ramped to 95% B
over 19.5 min and held for 4 min, and decreased to
0% B in 3 min. The flow rate of mobile phase was set
at 1 mL/min. The operational parameters for the
triple quadrupole mass analyzer used to conduct
MRM mode analyses were set at an interface voltage
of 4.5 kV, nebulizer gas flow of 3 L/min, drying gas
flow of 15 L/min, desolvation line temperature of
250 °C, and heat block temperature of 450 °C.

2.7. Elucidation of residual pesticide distributions
on grape surfaces using TD-ESI/MS/MS

TD-ESI/MS/MS was also used to reveal the dis-
tribution of the pesticide residues on a grape. To
remove surface residual pesticides, a grape was
randomly picked from the bunch and thoroughly
hand-cleaned with 200 mL distilled deionized water
before being air-dried, after which metallic probes
were swept across the grape surface to collect
samples for analysis. The cleaned grape was
immersed in the solution containing carbofuran and
methomyl (10 pg/mL each) for 15 min and removed.
After air-drying, the surface of grape was sampled
with probes. The probes were then subjected for
TD-ESI/MS/MS analysis and the results were used
to generate molecular cartography as per section 2.3.
In contrast to the above experiment, probe sampling
followed by TD-ESI/MS/MS analysis was per-
formed on non-cleaned and non-organic grapes
purchased from a local market to explore the
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distribution heterogeneity of residual pesticides on
real samples.

3. Results and discussion

3.1. Evaluation of TD-ESI/MS/MS parameters and
analytical capabilities

Two commonly used insecticides - carbofuran
and methomyl - were used to evaluate the
analytical capability of TD-ESI/MS/MS for the
detection of trace pesticides. Two major product
ions of carbofuran (m/z 165 and m/z 123) were
detected from collision-induced dissociation (CID)
of the protonated carbofuran ion (MH™, m/z 222,
inset in Fig. S1a). Therefore, the two transitions m/z
222 — 165 and m/z 222 — 123 were saved in the
MRM database to screen for carbofuran during TD-
ESI/MS/MS analyses. Similarly, the transitions m/z
163 — 88 and m/z 163 — 106 for the major product
ions of the protonated methomyl ion (MH™, m/z 163,
inset in Fig. S1b) were saved in the MRM database
to screen for methomyl during TD-ESI/MS/MS
analyses.

The relative standard deviations (RSDs) for trip-
licate analysis of carbofuran and methomyl stan-
dard solutions were found to be 22.7% and 16.3% for
the 0.5 pg/mL solution, 14.1% and 18.6% for the 1
pg/mL solution, 20.4% and 9.2% for the 5 pug/mL
solution, and 12.2% and 9.3% for the 10 ng/mL so-
lution, respectively (Fig. S1). As it can be seen in
Fig. S1, the RSD values for carbofuran are higher
than methomyl among partial tested concentrations
by using TD-ESI/MS/MS analysis. The possible
explanation due to the higher boiling point of car-
bofuran (313 °C) than that of methomyl (228 °C)
resulting in low ionization efficiency. In this study,
the temperature of TD source was set at 280 °C to
thermally desorbed analytes from the sampling
probe. In addition, no obvious analyte carryover was
observed, which was verified by analyzing blank
solutions between samples (data not shown). Based
on the signal-to-noise ratio (SNR), the limits of
detection (LODs) of TD-ESI/MS/MS for both car-
bofuran and methomyl were estimated to be 0.5 ng/
mL as determined by analyzing the respective
pesticide solutions dried on a glass slide. The aver-
aged recoveries of carbofuran with all tested con-
centrations (1, 5, and 10 pg/mL) were around
71.68%—82.03%, while methomyl were 91.36%—
126.83%, respectively. (data not shown). The value
was calculated by comparing the acquired average
peak area from the standard solutions deposited on
a glass slide and pure standard solutions in TD-ESI/
MS/MS analysis.

3.2. TD-ESI/MS/MS characterization of residual
pesticides on grapes

Fig. 2 shows the full scan TD-ESI mass spectra
recorded for samples randomly collected from the
surface of four grapes, where glucose (M™, m/z 180)
and azoxystrobin (MH™, m/z 404) on the surfaces of
all grape samples were detected as predominant
analyte signals in positive ion mode. Moreover, the
MS/MS spectra confirmed the identity of both
compounds (data not shown). Although the four
grapes were collected from the same bunch, the
signal intensity of azoxystrobin differed between
each grape. The lowest signal intensities of azox-
ystrobin were detected on Grape #1 (0.5 x 10°
counts) which was from the outer layer of the bunch
(Fig. 2a). High ion signal intensities of azoxystrobin
were detected on Grape #2 (5.5 x 10° counts) which
was from the outer layer of the bunch (Fig. 2b) and
Grape #3 (6.0 x 10° counts) which was from the
inner layer of the bunch (Fig. 2c). The intensity of
detected azoxystrobin from the inside-lying Grape
#4 (1.0 x 10° counts) was lower than those of Grape
#2 and #3 but higher than that of Grape #1 (Fig. 2d).
The heterogeneous ion intensities of azoxystrobin
on different grapes indicated that the pesticide
concentrations on grape surfaces may be primarily
determined by the grape location (in the outer layer
or the inner layer of the grape bunch); however,
other factors will also be involved, such as the di-
rection of phototropic growth or wind current.

Since TD-ESI/MS (full scan mode) only detect
high concentration of residual pesticides (i.e. azox-
ystrobin) on the grape surface, TD-ESI/MS/MS
(MRM mode) was then used to detect trace residual
pesticides on grape surfaces. Table 1 lists the TD-
ESI/MS/MS results of the residual pesticides
detected on Grapes #1~4 picked from the same
bunch. Fig. 52 displays the MRM results of eight
pesticide from triplicate TD-ESI/MS/MS analysis of
Grape #1 which was located at the outer layer of the
bunch (Fig. 2a). The precursor and product ion
signals for six fungicides (azoxystrobin, chlozolinate,
dimethomorph, metrafenone, pyraclostrobin, and
trifloxystrobin, Figs. S2a-f), one miticide (cyflume-
tofen, Fig. S2g), and one insecticide (tebufenozide,
Fig. S2h) were detected on both Grape #1 and #4
(the latter was located at the inner layer of the
bunch). Two other fungicides - boscalid and fluo-
picolide - were detected on Grape #2, which was
from the outer layer of the bunch. In addition, the
fungicide pyraclostrobin was not detected on Grape
#3, which was from the inner layer of the bunch.
Grape #2 was selected as the sample to study the
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Fig. 2. TD-ESI mass spectra for grapes from different locations in the same bunch: Grape #1 (a) and #2 (b) from the outer layer, and Grape #3 (c) and

Grape #4 (d) from the inner layer.

differences on the pesticides detected by TD-ESI/
MS/MS, GC/MS/MS, and LC/MS/MS, respectively.

Ten pesticides (8 fungicides, 1 miticide, and 1
insecticide) were detected on the surface of Grape
#2 by probe sampling followed by TD-ESI/MS/MS
analysis (Table 2). The detection of residual pesti-
cides was confirmed by the presence of two MRM
transition signals (SNR >3) for each pesticide in
each of the triplicate analyses. Eleven pesticides (8
fungicides and 3 insecticides) were detected by
simple solvent extraction followed by LC/MS/MS

analysis (Fig. S4). Among the detected pesticides,
two of them (cyflumetofen, and metrafenone) were
detected by TD-ESI/MS/MS but not by simple sol-
vent extraction following by LC/MS/MS analysis;
conversely, four pesticides (carbaryl, carbendazim,
flutriafol, and imdacloprid) were detected by LC/
MS/MS but not by TD-ESI/MS/MS analysis. The
differences in the number of detected pesticides by
probe sampling followed by TD-ESI/MS/MS and
simple solvent extraction followed by LC/MS/MS
analysis are due to: (1) heterogeneous distribution of

Table 1. Data for residual pesticides detected on the surfaces of the grapes from different locations (inside or outside) on the same bunch. Surface
analytes on the grape surface were collected via probe sampling followed by TD-ESI/MS/MS.

Pesticides Grape #1 (outside) Grape #2 (outside) Grape #3 (inside) Grape #4 (inside)
Azoxystrobin Vv v v v
Boscalid ND v ND ND
Chlozolinate Vv v v v
Cyflumetofen v v v v
Dimethomorph Vv v v v
Fluopicolide ND v ND ND
Metrafenone Vv v v v
Pyraclostrobin v v ND v
Tebufenozide Vv v v v
Trifloxystrobin Vv v v v

ND: not detected.
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Table 2. Data for residual pesticides detected on the surface of Grape #2. Surface analytes were collected via probe sampling followed by TD-ESI/MS/
MS and solvent extraction followed by LC/MS/MS and GC/MS/MS, respectively.

Pesticides Category Precursor ion Product ion TFDA's Probe sampling Solvent
Tolerance followed by extraction
followed by
(m/z) (m/z) (ng/mL) TD-ESI/MS/MS LC/MS/MS GC/MS/MS

Acrinathrin Miticide 208.0 181.0 2 ND v
Azoxystrobin Fungicide 404.0 372.0, 344.0 1 Vv Vv b
Boscalid Fungicide 343.0 306.9, 1400 1 v v b
Carbaryl Insecticide 202.1 145.0, 127.0 0.5 ND Vv >
Carbendazim Fungicide 192.1 160.0, 132.0 3 ND Vv b
Chlorothalonil Fungicide 266.0 168.0 2 ND -7 Vv
Chlozolinate Fungicide 282.0 247.0, 265.0 0.01 v -7 ND
Cyflumetofen Miticide 465.2 249.0,4480  0.01 Vv ND b
Dimethomorph  Fungicide 388.0 300.9, 165.0 1 v Vv b
Fluopicolide Fungicide 383.0 173.0, 145.0 3 Vv Vv -
Flutriafol Fungicide 302.1 70.0, 123.0 2 ND v b
Imidacloprid Insecticide 2561 209.0,175.0 1 ND i b
Isoxathion Insecticide 105.0 77.0 0.01 ND -1 v
Metrafenone Fungicide 409.1 227.0, 209.0 2 Vv ND >
O, P'-DDD Insecticide 235.0 107.0 0.01 ND ? v
Pyraclostrobin Fungicide 388.1 194.0, 163.0 2 Vv Vv b
Tebufenozide Insecticide 353.2 133.0, 105.0 2 v Vv -
Trifloxystrobin Fungicide 409.0 186.0, 145.0 2 v b

10/18 (56%) 11/18 (61%) 4/18 (22%)

ND: not detected.
? Analyte not in the TFDA LC/MS/MS pesticide database.
® Analyte not in the TFDA GC/MS/MS pesticide database.

some pesticide on grape surfaces, so that non-
detectable amounts of the pesticides were sampled
by probe; (2) pesticide loss during pre-concentration
before LC-MS/MS analysis; (3) low thermal
desorption efficiency of non-volatile pesticides in
the TD-ESI source; (4) decomposition thermally
labile pesticides in the TD-ESI source; and (5) ion
suppression by sugar and other ions during TD-ESI/

Region #1 (44 cells)

x10'  (a) Total ion current
3

Region #2 (42 cells)

MS/MS analysis. Four nonpolar pesticides (acrina-
thrin, chlorothalonil, isoxathion, and O,P’-DDD)
were detected by GC-MS/MS analysis (Fig. S5). Due
to their low ionization efficiencies in ESI, these
pesticides were undetectable either by TD-ESI/MS/
MS or LC/MS/MS (Table 2). In addition, chlozoli-
nate was detected by TD-ESI/MS/MS but not by
simple solvent extraction following by GC/MS/MS

Region #3 (30 cells) Region #4 (33 cells)

]
il
,,«('M " ,“_

|
Ao

(b) Azoxystrobin

<10 (¢) Dimethomorph

Fig. 3. TICs of residual pesticides in MRM mode from TD-ESI/MS/MS analysis of 149 locations with the same sampling probe from a non-cleaned
and non-organic grape: (a;-a4) Total MRM ion current, (b;-by) TIC of carbofuran, and (c;-c4) TIC of dimethomorph. Two major MRM transitions
were monitored for each pesticide (major and minor transitions were marked in red and blue, respectively).
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(a) Azoxystrobin
(m/z 404—372)

(b) Dimethomroph
(m/z 388—301)

(c) Azoxystrobin
(m/z 404—372)

(d) Dimethomorph
(m/z 388—301)

Relative intensity

Fig. 4. Molecular cartography of residual (b) azoxystrobin and (c) dimethomroph detected on the surface of a non-cleaned and non-organic grape in
2D. Three-dimensional surface molecular cartography of azoxystrobin and dimethomroph on the grape from (b) and (c). Images were generated using
data from probe TD-ESI/MS/MS analysis (Online video: https://youtu.be/qeX1-nyVRzk).

analysis. Due to its short half-life (0.4 days) led to
loss during sample pretreatment.

3.3. Elucidation of residual pesticide distributions
on grape surfaces using TD-ESI/MS/MS

To understand the distribution of pesticides on
the surface of a cleaned grape after immersion in
the solution containing two pesticides (carbofuran
and methomyl, 10 pg/mL each), a molecular
cartography of each pesticide was constructed
using a color gradient based on the relative ion

signal intensity of each pesticide. The surface of the
grape was divided into four regions for sampling
(Fig. S3); each region was further divided into in-
dividuals cells - 44 cells in Region #1, 42 cells in
Region #2, 30 cells in Region #3, and 33 cells in
Region #4. No residual pesticides were detected on
the cleaned grape, so that all grape sampling re-
gions were visualized in dark gray (indicating the
baseline absence of detectable pesticides)
(Fig. S3b). As shown in Figs S3c and d, homoge-
neous distributions of carbofuran and methomyl
were determined via TD-ESI/MS/MS analysis,
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Fig. S1. TD-ESI/MS/MS MRM results from semi-quantitative analyses of (a) carbofuran and (b) methomyl standard solutions at concentrations
ranging from 0.5 to 10 ug/mL (1—20 ng) deposited on a glass slide.
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Fig. S2. TD-ESI/MS/MS ion current for (a) azoxystrobin, (b) chlozolinate, (c) dimethomorph, (d) metrafenone, (e) pyraclostrobin, (f) trifloxystrobin,
(9) cyflumetofen, and (h) tebufenozide detected on the surface of the Grape #1 from the outer layer of the bunch. Two ion pairs were monitored for each
pesticide and triplicate analysis was performed.
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(a) Marked grape

Region #1 (44 cells)

Region #2 (42 cells)

Region #3 (30 cells)

Region #4 (33 cells)
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(b) Cleaned grape

(¢) Carbofuran
(m/z 222—165)

gﬁ:

(d) Methomyl
(m/z 163—88)

Relative intensity

Fig. S3. (a) sampling locations on the 4 regions of the grape. MSIs of water-cleaned grapes (b) without any surface-spiked pesticides, (c) with surface-

spiked carbofuran, and (d) surface-spiked methomyl.

indicating the potential for probe sampling com-
bined with AIMS for elucidating the distribution of
residual pesticides on grape surfaces.

On the other hand, Fig. 3a displays the total ion
current (TIC) of the pesticide residues (through
MRM mode) from TD-ESI/MS/MS analysis of a
non-cleaned and non-organic grape. Samples were
collected from 149 pre-defined cells on the grape
surface. Fig. 3b,c show the ion signals of two com-
mon fungicides azoxystrobin (m/z 404 — 372 and m/
z 404 — 344) and dimethomorph (m/z 388 — 301
and m/z 388 — 165) detected from all 149 cells on the
surface of the non-cleaned grape. However,

stronger ion signals for azoxystrobin and dimetho-
morph were detected in Region #1 and #2 than those
in Region #3 and #4, which suggest that Region #1
and #2 may be the outward-facing side which may
have more pesticide exposure than the inward-fac-
ing Region #3 and #4. Based on the above results
and similar analytical strategy, molecular cartog-
raphy for each residual pesticide detected on the
non-organic grape surface was constructed using a
color gradient based on the relative intensity of the
pesticide ion signal (Fig. 4a,b).

To visualize the molecular cartography of the re-
sidual pesticides on the grape in 2D, 3D animated
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Fig. S4. Detection of (a) azoxystrobin, (b) boscalid, (c) carbaryl, (d) carbendazim, (e) dimethomorph, (f) fluopicolide, (g) flutriafol, (h) imidacloprid, (i)
pyraclostrobin, (j) tebufenozide, and (k) trifloxystrobin residual pesticides on a grape by simple solvent extraction, followed by LC/MS/MS analysis.

cartography were generated based on the results in
Fig. 4a,b. The distribution of specific pesticides on
the whole grape surface was revealed after
combining the 2D four-sided images, so that 3D
animated cartography were also generated to
display the heterogeneous distributions of the re-
sidual azoxystrobin and dimethomorph on real
grape sample (Fig. 4c, d, and https://youtu.be/qeX1-
nyVRzk).

4. Conclusions

This study illustrates the feasibility of using
AIMS and probe sampling to generate 3D animated

molecular cartography of residual pesticides on a
grape surface. The sampling probe was employed
to collect samples from different regions on the
surface of the grape. TD-ESI/MS/MS was used to
rapidly characterize residual pesticides that were
collected using probes, where results were com-
parable to those by simple solvent extraction fol-
lowed by GC/MS/MS and LC/MS/MS analyses.
These results were further applied to generate
mass spectrometric cartography of specific pesti-
cides on grape surfaces.

Herein, the detection sensitivity of TD-ESI/MS/
MS for pesticide presents a major challenge with
obtaining high-resolution MSI, where fewer

=
—
o
H
~
<
-
<
Z
2
=4
o



https://youtu.be/qeX1-nyVRzk
https://youtu.be/qeX1-nyVRzk

o
z
2
Z
>
=
>
~
e
@)
a
3

762 JOURNAL OF FOOD AND DRUG ANALYSIS 2021;29:751—763

(x1,000)

— | (a) Acrinathrin 208.00>181.00
§ >0 289.10>93.00
5]
2
g 25
g 2
7.5 10.0 125 15.0 min
(x100,000)
1.5 :
= (b) Chlorothalonil 266.00>168.00
El 265.90230.80
2 1.0+
2
8 o5
— T T
75 10.0 125 15.0 min
(x1,000)
= 154 (c) 0,p'-DDD 235.00>165.00
§ 235.00>165.20
S 104
g 0.5
|
o l
: : . :
75 10.0 125 15.0 min
(x100.000)
— ,od (d)Isoxathion
3
NS
g 1.0
3]
T L‘ T T
7.5 10.0 12.5 15.0 min

Fig. S5. Detection of (a) acrinathrin, (b) chlorothalonil, (c) O,P'-DDD,
and (d) isoxathion residual pesticides on a grape by simple solvent
extraction followed by GC/MS/MS analysis.

samples are collected from smaller area to balance
imaging resolution and analytical efficiency. To
increase the imaging resolution of the technique,
smaller sample surface areas can be collected and
analyzed. Spatially-resolved imaging of residual
pesticide can not only benefit the search for added-
value natural foods, but can also be used to
improve food quality and safety, such as (1)
investigating the presence and degree of surface
contaminants, defects, or key markers on food (e.g.
the distribution of fruit powder on grape surface)
to estimate ripening and consumption windows;
(2) screening for substances banned from or
restricted for use in food production and con-
sumption, and (3) determining the distributions of
residual pesticide on fruits to potentially improve
the agricultural application of pesticide sprays. The
approach studied herein demonstrates strong po-
tential for further applications in material science
and forensic sciences, such as exploring the dis-
tributions of chemical compounds on solids and in
liquids.
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