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Abstract

We have demonstrated that red algae Gelidium amansii (GA) hot-water extract (GHE) is a polysaccharide-rich fraction,
containing 68.54% water-soluble indigestible carbohydrate polymers; the molecular weight of major polysaccharide is
892. Here, we investigated the mechanisms of GHE on plasma and hepatic lipid metabolisms in high-fat (HF) diet-fed
rats. Rats were divided into: normal diet group, HF-diet group, HF-dietþ5% GHE group, and HF-dietþ1% cholestyr-
amine group. GHE supplementation for 8 weeks significantly decreased plasma cholesterol, LDL-C, and VLDL-C levels
and increased the fecal triglyceride and bile acid excretion in HF diet-fed rats. GHE group has lower lipid contents in the
liver and adipose tissues. GHE supplementation decreased the activities of acetyl-CoA carboxylase, fatty acid synthase,
and HMG-CoA reductase in the livers. The levels of increased phosphorylated AMP-activated protein kinase (AMPK),
peroxisome proliferator activated receptor (PPAR)-a, farnesoid-X receptor (FXR), low density lipoprotein receptor
(LDLR), and cytochrome P450-7A1 (CYP7A1) protein expression, and the decreased PPAR-g protein expression in the
livers were observed in GHE group. These results suggest that GHE supplementation is capable of interfering in
cholesterol metabolism and increasing hepatic LDLR and CYP7A1 expression to decrease blood cholesterol, and acti-
vating FXR and AMPK to inhibit lipogenic enzyme activities and reduce the hepatic lipid accumulation.

Keywords: cholestyramine, high-fat diet-fed rats, lipid metabolism, polysaccharide-rich Gelidium amansii hot-water extract

1. Introduction

M etabolic diseases such as diabetes, dyslipi-
demias, cardiovascular disease, and certain

cancers are global health concern. As the Body
Mass Index (BMI) increases, the chances of
suffering from cardiovascular disease, hyperten-
sion, osteoarthritis, type 2 diabetes, and cancer
also increase [1]. These diseases are associated
with obesity [2]. Obesity is also a major risk factor
for cardiovascular disease, since much adipocytes
increase inflammatory factors and cause the risk
of developing cardiovascular disease. On the

other hand, nonalcoholic fatty liver disease
(NAFLD) is characterized by lipid accumulation
in the liver. The NAFLD might lead to liver injury,
such as non-alcohol steatohepatitis, liver fibrosis,
and liver cirrhosis. Obesity is known to be asso-
ciated with NAFLD [3]. Therefore, to improve and
to prevent the occurrence of obesity and fatty liver
have become an important and urgent issue for
health.
Gelidium amansii (GA) is the edible seaweed (red

algae), which is wildly distributed in Asian countries
such as Korea, China, Japan, and Taiwan. The agar
product (1,3-linked b-D-galactopyranose and 1,4-
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linked 3,6-anhydro-a-L-galactopyranose units) of
GA [4] can be prepared to form a gel [5], which is a
traditional food in Japan and Taiwan. Recent studies
have indicated that GA has hypoglycemic and
hypolipidemic effects in diabetic animal model [6]
and patients with diabetes [7]. In addition, it has
been shown that the ethanol extract of GA has a
beneficial effect on decreasing body weight and
reducing serum lipids in mice fed a high-fat (HF)
diet [8]. Recently, we have found that GA hot-water
extract (GHE) possesses the ability of anti-obesity
and reducing triglyceride and cholesterol in the
plasma and liver of HF diet-fed hamsters [9,10]. We
have also demonstrated that GHE is a poly-
saccharide-rich fraction of GA and contained 68.54%
carbohydrate polymers, which galactose is the
major monosaccharide of water-soluble indigestible
polysaccharide from GHE [10]. These water-soluble
fibers of GHE may contribute to reduce lipids in the
blood and liver. Although GHE may exert a down-
regulation effect on hepatic lipid metabolism
through AMP-activated protein kinase (AMPK)
phosphorylation and up-regulation of uncoupling
protein (UCP)-2 in the livers of HF diet-fed ham-
sters [10], the mechanism of reducing lipids in the
plasma and liver by GHE still remains to be clari-
fied. In this study, therefore, to assess the possible
effect and mechanism of GHE on lipids of plasma
and liver, rats fed a HF diet with GHE supplemen-
tation was investigated.

2. Materials and methods

2.1. Chemicals

Cholesterol, cholic acid, heparin, and cholestyr-
amine were obtained from SigmaeAldrich (St.
Louis, MO, USA). The enzymatic assay kits for
detection of TC and TG were provided by Audit
Diagnostics (Cork, Ireland). The enzymatic assay
kits for detection of AST and ALT were obtained
from Randox Laboratories (Antrim, UK). A bile acid
assay kit was purchased from Randox Laboratories.
A glycerol assay kit was purchased from Randox
Laboratories. Hematoxylin and eosin staining solu-
tion were obtained from Leica Biosystems (Rich-
mond, IL, USA). RIPA lysis and extraction buffer
was purchased from Thermo Fisher Scientific
(Waltham, MA, USA). Polyvinylidene difluoride
membranes were obtained from Bio-Rad Labora-
tories (Hercules, CA, USA). An enhanced chem-
iluminescence detection kit was obtained from
PerkinElmer (Waltham, MA, USA). The antibodies
for AMPK and phospho-AMPK (Thr172) were pur-
chased from Cell Signaling Technology (Danvers,

MA, USA). The antibodies for farnesoid X receptor
(FXR), peroxisome proliferator activated receptor
(PPAR)-a, PPAR-g, low density lipoprotein receptor
(LDLR), cytochrome P450-7A1 (CYP7A1), and
GAPDH were purchased from Santa Cruz Biotech-
nology (Santa Cruz, CA, USA).

2.2. Preparation of polysaccharide-rich hot-water
extract of GA (GHE) and analysis of composition

The dry material of GA was purchased from the
market at Keelung, Taiwan. The preparation of
polysaccharide-rich GHE was performed as previ-
ously described [9,10]. Briefly, 100 g GA in the 2 L
deionized water was autoclaved at 121 �C for 20 min,
and then samples were cooling, filtered, and
lyophilized. The harvest weight of GHE was 38.09 g,
which the recovery rate was about 38.09%.
The analysis of molecular weight of poly-

saccharides was determined as previously described
by Kazlowski et al. [11,12]. The polysaccharide
sample was analyzed by HPLC (Hitachi L-2130) with
an Asahipak SB-804 HQ (7.5 � 300 mm) column and
pure water as the mobile phase.
The methods for analysis of carbohydrate content

and monosaccharide composition were performed
as previously described [10]. A colorimetric method
was used to determine the carbohydrate content
and a high performance anion-exchange chroma-
tography with pulsed amperometric detection
(HPAEC-PAD) was used to analyze the mono-
saccharide composition.
The contents of reducing sugar were determined

as previously described by Miller using a dini-
trosalicylic acid reagent [13]. The amounts of sulfate
present in sugar were detected as previously
described by Terho and Hartiala using a sodium
rhodizonate reagent, which formed a red compound
in the presence of barium [14].

2.3. Animals

The Animal House Management Committee of
the National Taiwan Ocean University approved
this animal study. The experimental animal man-
agement was in accordance with the guidelines for
the care and use of laboratory animals [15]. The
male SpragueeDawley (SD; 6-week-old) were pur-
chased from BioLASCO (Taipei, Taiwan). Rats were
individually maintained in cages at an environ-
mental condition of 23 ± 1 �C and 40e60% relative
humidity with a 12 h light/12 h dark cycle. Rats had
a 1-week acclimation period and free access to a
standard laboratory diet (5001 rodent diet, LabDiet,
St. Louis, MO, USA) and deionized water. Rats were
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randomly divided into four groups: normal control
diet (5001 rodent diet; NC group), HF diet (HF
group), HF diet þ 5% GHE (GHE group), and HF
diet þ 1% cholestyramine (CH group) and each
group fed the experimental diets for 8 weeks. The
compositions of these experimental diets were listed
in Table 1. Rats were free access to diet and water
during the experimental period. Body weight was
weighed per week. During the final 3 days in week
8, fecal samples were collected, which were further
dried and weighed. Cholestyramine, a bile acid
sequestrant, was as a positive control for hypolipi-
demic function.

2.4. Collection of samples from blood and tissues

Rats were euthanized under anesthesia at the end
of the experiment. Blood, liver, and perirenal and
para-epididymal adipose tissues were collected. The
preparation of plasma was performed by centrifu-
gation at 1750�g for 20 min (4 �C). All samples were
immediately frozen and stored at �80 �C until
further analysis.

2.5. Analysis of plasma lipids, lipoproteins, and
activities of aspartate aminotransferase (AST) and
alanine aminotransferase (ALT)

Both plasma TC and TG levels were analyzed by
using the enzymatic assay kits for TC and TG (Audit
Diagnostics). A density gradient by an ultracentri-
fuge (Hitachi, Tokyo, Japan) with 194,000�g at 10 �C
for 3 h was used to isolate and analyze the plasma
low-density lipoprotein (LDL), high-density lipo-
protein (HDL) and very-low-density lipoprotein
(VLDL); the lipoproteins were then collected by tube
slicing. The AST and ALT activities were

determined by the AST and ALT enzymatic assay
kits (Randox). The absorbance at 340 nm was
determined by a Hitachi U2800A spectrophotometer
(Tokyo, Japan).

2.6. Analysis of liver lipids and fecal lipids and bile
acid

The extractions of both liver and fecal lipids were
performed as previously described by Folch et al.
[16]. Both TG and TC levels were analyzed as pre-
viously described by Carlson and Goldfarb [17]. The
extraction and detection of fecal bile acids were
determined as previously described by Cheng and
Lai [18].

2.7. Detection of lipolysis rate

The detection of lipolysis rate was performed as
previously described by Berger and Barnard [19].
Briefly, the samples of adipose tissues (0.2 g) were
minced, and then incubated in 2 mL of 25 mM N-
tris-(hydroxymethyl)methyl-2-aminoethanesulfonic
acid buffer (pH 7.4) containing 1 mM isoproterenol at
37 �C. The glycerol levels were determined by a
glycerol assay kit (Randox Laboratories) after 1, 2,
and 3 h of incubation. The absorbance at 520 nm
was measured by a Hitachi U2800A spectropho-
tometer. The equation of micromoles of glycerol
released per gram of adipose tissue per hour was
used to indicate the lipolysis rate.

2.8. Detection of lipoprotein lipase (LPL) activity

The activity of LPL in the adipose tissues was
analyzed as previously described by Kusunoki et al.
[20]. Briefly, the samples of adipose tissues (0.1 g)
were minced, and then incubated in KrebseRinger
bicarbonate buffer (pH 7.4) containing 10 units/mL
heparin for 60 min at 37 �C. The heparin solution
was reacted with an equal volume of p-nitrophenyl
butyrate (2 mM). The absorbance at 400 nm was
measured by a Hitachi U2800A spectrophotometer.
The amount of p-nitrophenol formation over the
10 min incubation was used to indicate the LPL
activity.

2.9. Histological examination of liver

The hepatic histological examination was per-
formed as previously described [21]. The 5-mm thick
paraffin sections of liver samples were used to stain
hematoxylin and eosin (H&E). A photo microscope
(Nikon Eclipse TS100, Nikon Instruments, Melville,
NY, USA) equipped with a digital camera (Nikon

Table 1. Composition of experimental diets (%).

Ingredient (%) NC HF GHE CH

Chow diet 100 89.3 82.8 89.3
Lard 10 11.5 10
Cholesterol 0.5 0.5 0.5
Cholic acid 0.2 0.2 0.2
Gelidium amansii hot-water extract 5

Total 100 100 100 100

Cholestyramine 1

Total calories (kcal/100g) 336.20 394.7 396.4 394.7

Carbohydrate (% kcal) 57.94 44.07 43.21 44.07
Protein (% kcal) 28.67 21.81 20.14 21.81
Fat (% kcal) 13.39 34.12 36.65 34.12

NC: Normal control diet (Chow diet); HF: High fat diet (Chow
diet þ 10% lard); GHE: High fat diet þ Gelidium amansii hot-water
extract; CH: High fat diet þ 1% Cholestyramine.
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D5100, Nikon Instruments) was used to observe and
image the stained tissue sections.

2.10. Measurement of hepatic acetyl-CoA
carboxylase (ACC) activity

The analysis of ACC activity was determined as
previously described [22]. Briefly, the reagents
(50 mM TriseHCl buffer, 10 mM MgCl2, 10 mM
potassium citrate, 3.75 mM glutathione, 12.5 mM
KHCO3, 0.675 mM BSA, 0.125 mM acetyl-CoA,
3.75 mM ATP, liver cytosol preparations, and 10 mM
NADPH) were mixed and reacted in 96-well
microplates. The absorbance at 340 nm was
measured by a VersaMax microplate reader (Mo-
lecular Devices, San Jose, CA, USA).

2.11. Measurement of hepatic fatty acid synthase
(FAS) activity

The analysis of ACC activity was determined as
previously described [22]. Briefly, the reagents
(0.2 M K2HPO4 buffer, 20 mM dithiothreitol (DTT),
0.25 mM acetyl-CoA, 60 mM EDTA$2Na, 0.39 mM
malonyl-CoA, liver cytosol preparations, and 6 mM
NADPH) were mixed and reacted in 96-well
microplates. The absorbance at 340 nm was
measured by a VersaMax microplate reader (Mo-
lecular Devices, San Jose, CA, USA).

2.12. Measurement of hepatic HMG-CoA reductase
(HMGCR) activity

The preparation of liver microsomes fraction was
performed as previously described by Krüner and
Westernhagen [23]. Briefly, the reagents (0.2 M KCl,
0.16 M KH2PO4, 0.004 M EDTA, 0.01 M DTT, 0.1 mM
HMG-CoA, liver microsomal preparations, and
0.2 mM NADPH) were mixed and reacted in 96-well
microplates. The absorbance at 340 nm was
measured by a VersaMax microplate reader (Mo-
lecular Devices, San Jose, CA, USA).

2.13. Immunoblot analysis

The analysis of protein expression by Western
blot was performed as previously described [10,21].
Briefly, the proteins in the livers were lysed and
extracted by a RIPA lysis and extraction buffer
(Thermo Fisher Scientific). The proteins (50e100 mg)
were added into 8% or 10% sodium dodecyl sulfate
polyacrylamide gels and transferred to poly-
vinylidene difluoride membranes (Bio-Rad Labora-
tories). After blocking for 1 h, the membranes were
reacted overnight at 4 �C with primary antibodies

for AMPK, phospho-AMPK (Thr172) (Cell Signaling
Technology), farnesoid X receptor (FXR), peroxi-
some proliferator activated receptor (PPAR)-a,
PPAR-g, low density lipoprotein receptor (LDLR),
cytochrome P450-7A1 (CYP7A1), and GAPDH
(Santa Cruz Biotechnology, Santa Cruz, CA, USA),
and then incubated with horseradish peroxidase
linked secondary antibodies for 1 h at room tem-
perature. The cross-reactivity was determined by an
enhanced chemiluminescence kit (PerkinElmer).
The densitometric analysis was determined by an
ImageJ software (National Institutes of Health,
Bethesda, MD, USA).

2.14. Statistical analysis

Data are presented as mean ± standard deviation
(S.D.). The statistical analysis was assessed by one-
way analysis of variance (ANOVA) and post-hoc
Duncan test using a statistical software IBM SPSS
statistics 22.0 (Armonk, NY, USA). The p < 0.05 is
considered as statistically significant difference.

Table 2. Analysis of carbohydrate content and monosaccharide
composition of Gelidium amansii hot-water extract (GHE).

General composition GHE (%)a

Moisture 6.5
Protein 6.7
Total lipids 0.25
Ash 4.6
Nitrogen free extract 81.95

Sugar GHE (per mg)b

Total sugar 0.84 mg
Reduced sugar 0.79 mg
Sulfate content 4.11%

Carbohydrate content GHE (%)a

Carbohydrate polymers 68.54

Molecular weights of major
component in polysaccharidesc

GHE (kDa)
892

Monosaccharide Compositiond GHE (%)a

Galactose 86.0
Fucose 8.3
Glucuronic acid 2.0
Mannose 1.5
Xylose 1.1
Glucose 0.6
Rhamnose 0.5
a Data are cited from our previous study by Yang et al. (2019)

[10].
b Partial data are cited from our previous study by Yang et al.

(2017) [9].
c The molecular weight of polysaccharide was analyzed by

HPLC.
d Values for monosaccharide composition analysis were deter-

mined by high-performance anion-exchange chromatography
with pulsed amperometric detection (HPAEC-PAD).
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3. Results

3.1. Analysis of polysaccharide content, molecular
weight, and monosaccharide composition in GHE

We have demonstrated that GHE contains 6.5%
moisture, 4.6% ash, 0.25% crude fat, 6.7% crude
protein, and 81.95% nitrogen free extract [9]. We
have also found that GHE contains 68.54% carbo-
hydrate polymers and 86.0% Galactose, which is a
major monosaccharide of the water-soluble indi-
gestible polysaccharides from GHE [10]. We further
found that GHE contained 4.11% of sulfate content
in sugar. The polysaccharide samples had three
main major components with retention time at 6.00,
8.49, and 9.15 min, and their molecular weights were
estimated as 892, 26.5, and 10.5 kDa, respectively.
These data were summarized in Table 2.

3.2. Effects of GHE on body and tissue weights and
plasma, liver, and fecal lipids and biochemistry in
HF diet-fed rats

Male SpragueeDawley rats were divided into:
normal control diet group, HF diet group, HF
dietþ5% GHE group, and HF dietþ1% cholestyr-
amine (as a positive control) group. As shown in
Fig. 1 and Table 3, there was a significant increase in
body weight in rats fed a HF diet for 8 weeks as
compared to the normal control diet (NC) group.
Supplementation of GHE, but not cholestyramine,
significantly decreased body weight in HF diet-fed
rats. The average food intake in the HF group was
significantly lower than that in the NC group, but
the feed efficiency ratio in the HF group was
significantly higher than that in the NC group
(Table 3). Supplementation of GHE, but not chole-
styramine, significantly reduced the food intake in
HF diet-fed rats, although it did not affect the feed
efficiency ratio (Table 3). Moreover, the liver
weights were significantly increased in HF diet-fed
rats, which could be significantly reversed by both
GHE and cholestyramine supplementation (Table
3). Supplementation of GHE, but not cholestyr-
amine, could significantly reduce the increased ad-
ipose tissues weights in HF diet-fed rats (Table 3).
The changes in the levels of plasma lipids, AST/

ALT, and glucagon like peptide-1 (GLP-1) were
shown in Table 4. The levels of Total cholesterol
(TC), VLDL-C, LDL-C, TC/HDL-C ratio, AST, and
ALT were significantly increased in HF diet-fed rats,
which could be significantly reversed by both GHE
and cholestyramine supplementation. The
decreased HDL-C/(LDL-C þ VLDL-C) ratio could
also be significantly reversed by GHE, but not

Fig. 1. Effects of GHE on body weight in SD rats fed different experi-
mental diets for 8 weeks. Data are presented as mean ± SD for each
group (n ¼ 8). Values with different letters indicate statistical signifi-
cance (p < 0.05). NC: Normal control diet; HF: High-fat diet; GHE:
High-fat diet þ Gelidium amansii hot-water extract; CH: High-fat diet
þ1% Cholestyramine.

Table 3. Effects of GHE on body weights, food intake and tissue weights in rats fed with HF diets for 8 weeks.

Parameters NC HF GHE CH

Initial body weight (g) 233.5 ± 8.8 239.4 ± 8.5 234.0 ± 6.9 237.6 ± 8.0
Final body weight (g) 507.1 ± 23.8b 573.4 ± 47.9a 519.1 ± 47.6b 570.4 ± 36.1a

Body weight gain (g) 273.6 ± 24.8b 334.0 ± 42.1a 285.1 ± 45.5b 332.8 ± 36.6a

Food intake (g/day) 30.6 ± 1.89a 28.5 ± 1.9b 26.0 ± 2.1c 27.2 ± 1.5bc

Feed efficiency ratio1 9.0 ± 1.0b 11.7 ± 1.3a 10.9 ± 1.3a 12.21 ± 0.9a

Liver weight (g) 15.2 ± 1.1c 31.8 ± 5.3a 26.7 ± 3.6b 26.8 ± 2.8b

Relative liver weight
(g/100 g BW) 3.0 ± 0.2c 5.5 ± 0.5a 5.1 ± 0.4b 4.7 ± 0.4b

Perirenal adipose weight (g) 7.6 ± 1.8b 13.2 ± 3.0a 8.2 ± 3.1b 9.8 ± 5.0ab

Epididymal adipose weight (g) 6.7 ± 1.4b 10.0 ± 1.9a 6.6 ± 1.7b 9.1 ± 2.8a

White adipose tissue weight (g) 14.4 ± 2.4b 23.1 ± 3.7a 14.8 ± 4.8b 18.8 ± 7.7ab

Relative white adipose tissue weight
(g/100 g BW) 2.8 ± 0.5b 4.0 ± 0.6a 2.8 ± 0.7b 3.3 ± 1.2ab

Data are presented as mean ± SD for each group (n ¼ 8). 1Feed efficiency ratio ¼ [body weight gain (g/day) ÷ food intake (g/day)].
Significant differences were determined by one-way analysis of variance (ANOVA) followed by Duncan's multiple rand test. Values with
different letters indicate statistical significance (p < 0.05). NC: Normal control diet (Chow diet); HF: High fat diet (Chow diet þ 10% lard);
GHE: High fat diet þ Gelidium amansii hot-water extract; CH: High fat diet þ 1% Cholestyramine.
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cholestyramine, supplementation in HF diet-fed
rats. GHE, but not cholestyramine, supplementation
could significantly decrease the levels of plasma
triglyceride (TG) and significantly increased the
levels of GLP-1 in HF diet-fed rats.
The changes in the contents of hepatic and fecal

lipids were shown in Table 5. The contents of TC
and TG in the liver of HF diet-fed rats were signif-
icantly enhanced, which could be significantly
reversed by both GHE and cholestyramine supple-
mentation. Both GHE and cholestyramine supple-
mentation significantly decreased the fecal TC
contents, but only GHE supplementation signifi-
cantly increased the fecal TG contents in HF diet-fed
rats. Moreover, both GHE and cholestyramine
supplementation could also significantly increase
the fecal bile acid contents in HF diet-fed rats (Table
5).
We further observed the hepatic morphology for

lipid accumulation. As shown in Fig. 2, the
morphology of hepatic cells in the NC group were
complete and compact; but in the HF group, there
were obvious fat vacuoles and the morphology of
hepatic cell was incomplete and the nuclei were
squeezed to the edge of the cells, which could be

significantly improved by both GHE and cholestyr-
amine supplementation.

3.3. Effects of GHE on adipose tissue TG contents
and lipolysis rate and lipoprotein lipase (LPL)
activity and hepatic lipid metabolism-related
protein expressions in HF diet-fed rats

Rats fed a HF diet showed significantly increased
adipose tissue TG contents and significantly
decreased the lipolysis rate, which could be signifi-
cantly reversed by GHE supplementation (Fig. 3A,
3B, and 3D). Cholestyramine supplementation could
also improve the increased perirenal adipose tissue
TG contents and the decreased perirenal adipose
tissue lipolysis rate in HF diet-fed rats (Fig. 3B and
3D). Both GHE and cholestyramine supplementa-
tion did not affect the LPL activity in the adipose
tissues of HF diet-fed rats (Fig. 3C).
We further investigated the activities of the key

enzymes for triglyceride synthesis [acetyl-CoA
carboxylase (ACC) and fatty acid synthase (FAS)]
and the enzyme of rate-limiting step for cholesterol
synthesis [HMG-CoA reductase (HMGCR)] in the
livers. As shown in Fig. 4, rats fed a HF diet

Table 4. Effects of GHE on plasma lipids, AST/ALT, and GLP-1 in rats fed with HF diets for 8 weeks.

Parameters NC HF GHE CH

Total cholesterol (mg/dL) 51.0 ± 14.1b 78.8 ± 23.9a 56.9 ± 21.0b 47.1 ± 12.4b

HDL-C (mg/dL) 37.1 ± 8.8a 25.4 ± 7.5b 25.8 ± 7.5b 21.4 ± 3.6b

VLDL-C (mg/dL) 7.8 ± 2.1b 23.8 ± 7.1a 14.1 ± 11.0b 12.3 ± 7.7b

LDL-C (mg/dL) 6.1 ± 3.9b 29.6 ± 18.2a 17.0 ± 12.0b 13.4 ± 2.9b

LDL-C þ VLDL-C 13.9 ± 3.7b 53.5 ± 22.8a 31.1 ± 17.9b 25.7 ± 9.6b

TC/HDL-C ratio 1.4 ± 0.2c 3.3 ± 1.1a 2.2 ± 0.7b 2.2 ± 0.3b

HDL-C/(LDL-C þ VLDL-C) ratio 2.8 ± 0.6a 0.5 ± 0.2c 1.0 ± 0.4b 0.9 ± 0.3bc

Triglyceride (mg/dL) 36.5 ± 12.9a 33.9 ± 13.2a 18.2 ± 8.0b 27.7 ± 11.3ab

AST (U/L) 50.1 ± 11.4b 94.6 ± 24.3a 42.7 ± 10.7b 46.5 ± 13.7b

ALT (U/L) 40.7 ± 15.4b 67.7 ± 35.1a 35.1 ± 6.3b 43.9 ± 13.3b

GLP-1 (pM) 5.2 ± 1.1b 5.4 ± 1.5b 12.0 ± 11.3a 4.5 ± 0.9b

Data are presented as mean ± SD for each group (n ¼ 8). Values with different letters indicate statistical significance (p < 0.05). NC:
Normal control diet; HF: High-fat diet; GHE: High-fat diet þ Gelidium amansii hot-water extract; CH: High-fat diet þ1% Cholestyramine.

Table 5. Effects of GHE on hepatic and fecal lipid profile in rats fed with HF diets for 8 weeks.

Parameters NC HF GHE CH

Liver

Total cholesterol (mg/g liver) 4.53 ± 2.17c 102.23 ± 26.13a 57.93 ± 15.29b 68.62 ± 14.15b

Total cholesterol (g/liver) 0.07 ± 0.04c 3.30 ± 1.19a 1.55 ± 0.53b 1.85 ± 0.46b

Triglyceride (mg/g liver) 14.66 ± 6.60c 103.73 ± 11.85a 82.82 ± 21.22b 86.57 ± 14.20b

Triglyceride (g/liver) 0.22 ± 0.10c 3.28 ± 0.57a 2.25 ± 0.79b 2.35 ± 0.63b

Feces

Total cholesterol (mg/g feces) 4.9 ± 0.7d 10.1 ± 0.9a 7.4 ± 0.9b 6.2 ± 1.1c

Total cholesterol (mg/day) 30.5 ± 6.1c 58.1 ± 9.2a 47.8 ± 7.5b 31.1 ± 7.1c

Triglyceride (mg/g feces) 3.4 ± 0.5a 3.0 ± 0.7a 3.6 ± 0.7b 2.7 ± 0.6ac

Triglyceride (mg/day) 20.5 ± 2.6ab 17.8 ± 5.7ac 22.3 ± 2.72b 13.9 ± 2.9ac

Bile acid (mmol/day) 2.8 ± 1.9ab 1.6 ± 1.0b 4.2 ± 3.1a 4.1 ± 2.1a

Data are presented as mean ± SD for each group (n ¼ 8). Values with different letters indicate statistical significance (p < 0.05). NC:
Normal control diet; HF: High-fat diet; GHE: High-fat diet þ Gelidium amansii hot-water extract; CH: High-fat diet þ1% Cholestyramine.
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exhibited significantly increased enzyme activities
of ACC, FAS, and HMGCR in the livers, which
could be significantly reversed by GHE, but not
cholestyramine, supplementation.
We next tested the lipid metabolism-related pro-

tein expressions in the liver. The levels of protein
expression of phosphorylated adenosine mono-
phosphate (AMP)-activated protein kinase (AMPK),
farnesoid X receptor (FXR), and peroxisome pro-
liferator-activated receptor (PPAR)-a were signifi-
cantly decreased, and the protein expression of
PPAR-g was significantly increased in the livers of
HF diet-fed rats, which could be significantly
reversed by GHE supplementation (Fig. 5). Chole-
styramine supplementation could improve the
decreased protein expression of FXR and PPAR-a in
the livers of HF diet-fed rats, but it did not affect the
HF diet-induced alteration in phosphorylated
AMPK and PPAR-g protein expression in the rat
livers (Fig. 5). Both GHE and cholestyramine sup-
plementation could also increase the protein
expression of low density lipoprotein receptor
(LDLR) and cytochrome P450-7A1 (CYP7A1) in the
livers of HF diet-fed rats (Fig. 5).

4. Discussion

In the present study, we demonstrate that GHE
supplementation effectively ameliorates the altered
plasma cholesterol and hepatic lipid homeostasis in
a HF diet-fed rat model. GHE supplementation
decreases plasma TC, TG, LDL-C, and VLDL-C
levels, decreases adipose tissue TG levels, increases

fecal TG and bile acid excretion, decreases the
enzyme activities of hepatic ACC, FAS, and
HMGCR, and induces the protein expression of
hepatic phosphorylated AMPK, FXR, PPAR-a, LDL
receptor, and CYP7A1 in HF diet-fed rats.
GHE supplementation has been shown to in-

crease fecal cholesterol and bile acid contents, and
decreases plasma LDL-C in HF diet-fed hamsters
[9,10]. Similarly, the present study found that both
GHE and cholestyramine supplementation
increased fecal bile acid excretion and decreased
plasma LDL-C in HF diet-fed rats. However, both
GHE and cholestyramine supplementation signifi-
cantly decreased fecal cholesterol contents in HF
diet-fed rats. This is a different phenomenon from
the finding in hamster. We speculated that the
increased bile acid contents in the intestine may
enhance to increase the absorption of cholesterol
and to decrease fecal cholesterol contents. Chole-
styramine, a bile acid chelator with positive charge,
can combine with negatively charged bile acids in
the intestine to form an insoluble complex, which is
not absorbed and can be excreted [24]. This mech-
anism causes massive excretion of bile acids in feces
that triggers a negative feedback to activate the
LDLR activity, which enhances the uptake of blood
cholesterol into the liver and reduces blood
cholesterol levels; a feedback may further induce
the activity of CYP7A1 in the liver and metabolize
cholesterol into bile acid [24]. It has been shown that
dietary fibers may reduce blood lipids by improving
enterohepatic circulation [25]. Dietary fiber has also
been shown to play a major role in regulating the

Fig. 2. Effects of GHE on hepatic morphology in rats fed different experimental diets for 8 weeks. (A) Representative hematoxylin and eosin (H&E)
stained images in the livers were shown. Scale bar: 50 mm. (B) The fat vacuoles in the livers were quantified. Data are presented as mean ± SD for
each group (n ¼ 8). Values with different letters indicate statistical significance (p < 0.05). NC: Normal control diet; HF: High-fat diet; GHE: High-fat
diet þ Gelidium amansii hot-water extract; CH: High-fat diet þ1% Cholestyramine.
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metabolism of bile acids [26]. In the present study,
we found that HF diet-fed rats supplemented with
both GHE and cholestyramine induced an increase
in LDLR and CYP7A1 protein expressions. There-
fore, dietary soluble fiber-rich GHE lowered plasma
TC and LDL-C might be due to the increased
excretion of bile acids and the increased LDLR and
CYP7A1 protein expressions. However, the differ-
ence between GHE and cholestyramine supple-
mentation is that GHE can inhibit the hepatic
lipogenic enzyme activities such as FAS and ACC in

HF diet-fed rats, while cholestyramine does not,
which lead to decrease plasma TG in GHE group,
but not in CH group.
FXR, a nuclear receptor protein, is mainly

expressed in the liver and intestine, and has
important regulatory functions for bile acid balance
and liver lipid metabolism [27]. FXR can activate
small heterodimer partner (SHP) to inhibit CYP7A1
expression and regulate bile acid synthesis. During
liver lipid metabolism, FXR can also inhibit the ac-
tivity of SREBP1c by activating SHP to reduce the

Fig. 3. Effects of GHE on adipose tissue triglyceride levels and lipoprotein lipase (LPL) activity and lipolysis rate in SD rats fed different experimental
diets for 8 weeks. The levels of triglyceride in para-epididymal (A) and perirenal (B) adipose tissues were shown. The lipoprotein lipase (LPL) activity
and lipolysis rate in perirenal adipose tissues were shown in (C) and (D), respectively. Data are presented as mean ± SD for each group (n ¼ 8).
Values with different letters indicate statistical significance (p < 0.05). NC: Normal control diet; HF: High-fat diet; GHE: High-fat diet þ Gelidium
amansii hot-water extract; CH: High-fat diet þ1% Cholestyramine.

Fig. 4. Effects of GHE on hepatic enzyme activities of lipid biosynthesis in SD rats fed different experimental diets for 8 weeks. The activities of acetyl-
CoA carboxylase (ACC) (A) fatty acid synthase (FAS) (B) and HMG-CoA reductase (HMGCR) (C) in the livers were shown. Data are presented as
mean ± SD for each group (n ¼ 8). Values with different letters indicate statistical significance (p < 0.05). NC: Normal control diet; HF: High-fat diet;
GHE: High-fat diet þ Gelidium amansii hot-water extract; CH: High-fat diet þ1% Cholestyramine.
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activity of lipid biosynthetic enzymes FAS and ACC,
or directly activates PPARa to promote fatty acid
oxidation [27] and activates LDLR [28] to reduce
plasma LDL-C. In the present study, GHE supple-
mentation induced the hepatic CYP7A1 protein
expression and increased bile acid secretion, which
may lead to a feedback regulation to increase the
FXR protein expression to regulate the bile acid
metabolism. The increased FXR by GHE supple-
mentation could also activate PPARa to promote
fatty acid oxidation. Furthermore, GHE supple-
mentation could induce FXR and AMPK signaling
activation to inhibiting SREBP1c and PPARg
signaling that further inhibited the activities of
lipogenic enzymes such as ACC, FAS and HMGCR,
and thereby reducing the production of TC and TG
in the liver of HF diet-fed rats.
Increased body weight and adipose tissue and

liver weights were observed in rats fed a HF diet.
Supplementation of GHE induced a significant
decrease in body weight and adipose tissue and
liver weights. The lower body weight by GHE sup-
plementation might be related to the decreased
adipose tissue and liver weights. However, HF diet-
fed rats supplemented with GHE had lower food
intake that may be one of the reasons for lower body
weight. Most of dietary fibers do not reduce appetite

or energy intake, but some types and doses of di-
etary fibers are effective in reducing appetite and
energy intake [29]. It has been shown that water-
soluble dietary fibers can increase the concentration
of GLP-1 [30,31]. GLP-1 can inhibit the satiety and
food intake through acting on the hypothalamus of
the central nervous system, and can increase satiety,
suppress appetite, and delay gastric emptying
[32,33]. In the present study, an increase in plasma
GLP-1 level was observed in rats fed a HF diet with
GHE supplementation. Thus, the lower food intake
in rats fed a HF diet with GHE supplementation
might be due to the increased GLP-1 level. More-
over, the lower adipose tissue weight in rats fed a
HF diet with GHE supplementation might be due to
the increased activity of adipose tissue hormone-
sensitive lipase (HSL, increasing lipolysis rate)
through AMPK activation, because the increased
AMPK phosphorylation can promote HSL activation
in adipose tissue [34].
Kang et al. (2016) have found that mice fed a HF

diet treated with ethanol extract of GA (1 and 3%)
for 12 weeks exhibit effectively decreased body
weight, which may be due to decreased adipo-
genesis [8]. Yang et al. (2017) have reported that
hamsters fed a HF diet supplemented with GHE
(1.5%) for 6 weeks show significantly decreased

Fig. 5. Effects of GHE on hepatic lipid metabolism-related protein expression in SD rats fed different experimental diets for 8 weeks. (A) The levels of
protein expression of pAMPKa/AMPK, FXR, PPARa, PPARg, CYP7A1, and LDLR in the livers were measured by Western blotting. (B) Densito-
metric analyses for protein levels corrected to each internal control were shown. Data are presented as mean ± SD for each group (n ¼ 4e6). Values
with different letters indicate statistical significance (p < 0.05). NC: Normal control diet; HF: High-fat diet; GHE: High-fat diet þ Gelidium amansii
hot-water extract; CH: High-fat diet þ1% Cholestyramine.
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body weight and improved lipid metabolism, which
GHE may activate AMPK and decrease SREBP-1
and SREBP-2 protein levels in the livers to reducing
hepatic lipogenesis [9]. Moreover, Yang et al. (2019)
have recently shown that supplementation with 3%
GHE for 9 weeks in HF diet-induced obese ham-
sters, which previously feed a HF diet for 5 weeks to
induce obesity, prevents against diet-induced
obesity and altered TC and TG in the plasma and
liver; they further demonstrated that GHE amelio-
rated the dysregulation of hepatic lipid metabolism
through AMPK activation and up-regulation of
PPARa and UCP-2 [10]. In the present study, a HF
diet-fed rat model was used to demonstrate that
supplementation of 5% GHE for 8 weeks amelio-
rated the altered plasma TC and hepatic lipid ho-
meostasis by increasing hepatic LDLR and CYP7A1
expression and activating FXR and AMPK. These
findings from different animal models suggest that
ethanol or hot-water extracts of GA possess the
potential for anti-obesity or preventing dysregula-
tion of lipid metabolism from high-fat diet feeding.

5. Conclusions

Based on these results, GHE supplementation to
HF diet-fed rats can interfere in cholesterol meta-
bolism and increase hepatic LDLR and CYP7A1
expression to decrease blood cholesterol, and
induce FXR and AMPK signaling activation to
inhibit lipogenic enzyme activities and reduce the
lipid accumulation in the livers. To clarify the pre-
ventive role of polysaccharides fraction of GHE in
high-fat diet-induced alteration in plasma choles-
terol and hepatic lipid homeostasis, the poly-
saccharides fraction by precipitating GHE with
alcohol may be used to further investigation in the
future.
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