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Abstract

Acarbose (an a-glucosidase inhibitor) has been demonstrated to reduce the progression of atherosclerosis without
affecting serum levels of glucose in rabbits fed a high cholesterol diet. The main focus of recent atherosclerosis studies has
been microRNA targets. However, the mechanism by which acarbose targets miRNA-mediated atherosclerosis remains
unclear. This study aimed to evaluate the effect of acarbose on microRNA-related regulation of rat aortic vascular smooth
cell line (A7r5 cell) migration and proliferation induced by diabetic conditions. We reported that acabose exhibit signif-
icantly inhibits proliferative and cell migration abilities in A7r5 cells. The expression of protein and levels of mRNA were
measured by Western blot analysis and real-time PCR. Acarbose inhibited the phosphorylation of focal adhesion kinase
(FAK) and phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), Ras signals, small GTPase proteins expression to
attenuate cell migration and proliferation. Furthermore, acarbose upregulated the expression of miR-143, and transfected
miR-143 mimic and its inhibitor to explore its mechanism. In conclusion, acarbose reduces VSMC migration and pro-
liferation via upregulating miR-143 to inhibit Ras-related signaling, and potentially prevention of atherosclerosis.

Keywords: Acarbose, Atherosclerosis, VSMC migration, VSMC proliferation, miR-143

1. Introduction

C ardiovascular disease (CVD) is a major
cause of mortality worldwide, accounting

for around 17.9 million deaths each year [1].
Excess consumption of saturated fatty acids,
sugar-sweetened beverages, and alcohol is among
the dietary and lifestyle behaviors associated
with CVD development [2]. Risk factors of
CVD (including obesity, hypertension, dysli-
pidemia and diabetes mellitus) have been shown

to affect development and progression of the
disease process [3,4]. Complications of CVD
include angina, stroke, myocardial infarction,
hypertensive heart disease, and heart failure [5].
However, atherosclerosis is one of the forms of
CVD and has an association with arterial inflam-
mation and other metabolic alterations [6,7].
The initial steps in the pathogenesis of athero-

sclerosis are modification of low-density lipoprotein
cholesterol (LDL-c) in the vascular walls and then
change in cellular permeability to damage the
arterial walls [8]. These conditions trigger an
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inflammatory response in monocytes that adhere to
the arterial endothelium. Next, endothelial cells
express adhesion molecules to increase monocyte
migration to the sub-endothelial space and then
differentiation into macrophages that take up
cholesterol esters and transform into foam cells that
infiltrate the arterial walls [9]. Foam cells secrete
some growth factors to promote VSMC prolifera-
tion leading to fatty streak formation [10]. Ras
regulates the activation of the PI3K/Akt and the
ERK pathways to control the proliferation of
VSMCs [11,12]. FAK-Src complex plays an impor-
tant role in the cell motility, and phosphorylation of
FAK-Src complex increases VSMC migration
[13,14]. FAK-Src complex regulates the activation of
GTPases such as RhoA, Rac1, and Cdc42, which
have roles in cell migration. Matrix metal-
loproteinase (MMP) facilitates migration and
metastasis by damaging barriers formed by extra-
cellular matrix [15].
The a-glucosidase inhibitor acarbose prevents

postprandial hyperglycemia by delaying the ab-
sorption of complex carbohydrates and di-
saccharides from the small intestine [16]. Type 2
diabetes is associated with increasing risk for
atherosclerosis [17]. Postprandial hyperglycemia
may lead to atherosclerosis by increasing endothe-
lial dysfunction, inflammatory reactions, and
oxidative stress [18]. By decreasing postprandial
hyperglycemia, acarbose decreases the incidence of
silent myocardial infarctions and CVD in patients
with impaired glucose tolerance [19]. In our pre-
vious study utilized Mulberry 1-Deoxynojirimycin
(DNJ), the a-glucosidase inhibitor has been indi-
cated to inhibit glucose-induced VSMCs migration
by down-regulation of FAK and activation of
AMPK/RhoB [20]. In this study, we investigated the
inhibitory effect of acarbose in oleic acid/glucose-
induced VSMCs migration and whether it is similar
to DNJ. Acarbose also reduces the progression of
intima-media thickening in glucose intolerant pa-
tients and improves carotid plaque echogenicity in
patients with acute coronary syndrome [21].
MicroRNAs (miRNAs or miRs) are small non-

coding RNAs, approximately 25 nucleotides in
length, that regulate gene expression post-tran-
scriptionally. Recently, miRNAs with an important
role in cardiovascular biology, including miR-1,
miR-133, miR-21, miR-195, and miR-143/145, have
been identified in VSMCs [22,23]. In a previous
study, miR-1 has been linked to whole heart
development [24]; miR-133 expression has been
shown to influence VSMC proliferation by down-
regulating the ERK1/2 kinase-dependent pathway
[25]; and miR-21 by promoting VSMC

differentiation and proliferation has been shown to
lead to fibrosis and blood vessel wall thickening [26].
Wang et al. revealed that miR-195 reduced oxLDL-
induced VSMC proliferation via inhibition of Cdc42
protein expression [27]. In addition, previous studies
demonstrated that miR-143/145 modulates Ras-
MAPK pathway signaling and thereby inhibits
cellular proliferation of cultured VSMCs [28].
Moreover, it has been demonstrated that miR-143

has been demonstrated to modulate vascular injury,
plays a critical role in VSMC phenotypic switching,
promotes VSMC differentiation, and enhances actin
accumulation. In addition, a number of clinical
studies have shown that miR-143 dysregulation is a
cause of many CVDs involving hypertension, coro-
nary artery disease, and atherosclerosis [29e31]. We
hypothesized that targeting miR-143 with acarbose
may be a promising therapeutic strategy to improve
CVD and atherosclerosis. Therefore, in the present
study, we used the acarbose-induced decrease in
VSMC motility under diabetic conditions (oleic acid
and high glucose) as a model to investigate the po-
tential role of miR-143 in this mechanism.

2. Materials and methods

2.1. Chemicals and reagents

The acarbose was purchased from SigmaeAldrich
(St. Louis, MO, USA). Dulbecco's modified Eagle's
medium (DMEM), glutamine, Penicillin-Strepto-
mycin-Amphotericin B (PSA), fetal bovine serum
(FBS), pyruvate and trypsin EDTA were purchased
from Hyclone (Logan, UT, USA) and Gibco (Grand
Island, NY, USA) for cell culture. The ammonium
persulfate (APS), sodium dodecyl sulfate (SDS), bis-
acrylamide, TEMED, PVDF membranes, and NC
membranes were purchased from Gibco (Grand Is-
land, NY, USA) and Hyclone (Logan, UT, USA) for
Western blot analysis. The antibodies to Ras, phos-
pho-ERK, ERK, PCNA, PI3K, phospho-AKT, AKT,
Rac1, RhoA, Cdc42, phospho -FAK, FAK, MMP9,
MMP2, phospho-Src, Src and b-actin were pur-
chased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA) and Novus Biological (Littleton, CO, USA).

2.2. Cell culture

The rat aortic vascular smooth cell line A7r5 (Bio-
resource Collection and Research Center [BCRC] cell
bank, cell number 60082) was cultured in DMEM
containing 10% FBS, 1 mmoL/l sodium pyruvate,
4.5 g/L glucose, 4 mmol/l L-glutamine, 100 U/mL
penicillin, 100 mg/mL streptomycin, and 1.5 g/L
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sodium bicarbonate at 37 �C in an incubator with a
humidified atmosphere of 95% air and 5% CO2.

2.3. Cytotoxicity assay

The viability of A7r5 cells was determined using
the 3-(4,5-di-methylthiazol-2-yl)-2,5-diphen-yltetra-
zolium bromide (MTT) assay. After treatment,
0.5 mg/mL MTT reagent was added to each well and
the assay plate was incubated at 37 �C for 4 h. The
medium was aspirated, and formazan crystal was
dissolved in 100% isopropanol. The absorbance at
563 nm was measured in a spectrophotometric plate
reader (Hitachi, Japan).

2.4. BrdU cell proliferation assay

A7r5 cells (1 � 104 in 100 ml per well) were seeded
in a 96-well plate, cultured with (a) 150 mM oleic acid
(OA), (b) 25 mM high glucose (HG), or (c) OA and
HG together (OH), and then treated with acarbose
(1 and 3 mM) for 24 h. The bromodeoxyuridine
(BrdU) assay (Millipore, Billerica, MA, USA) was
carried out by adding 20 ml of working solution
(BrdU by dilute BrdU Label 1:2000) to each well,
incubating plates 2e24 h at 37 �C, aspirating the
contents of each well before adding 200 ml of fixa-
tive/denaturing solution, incubating 0.5 h at room
temperature (RT) before aspirating the well con-
tents, incubating the plate at RT for 1 h after adding
100 ml of anti-BrdU antibody (100X antibody diluted
1:100 in dilution buffer) to each well, washing the
wells three times with 1 X wash buffer (25 mL of the
20X concentrated solution to 475 mL of deionized
water) before pipetting 100 ml of solution (peroxi-
dase goat anti-mouse IgG HRP conjugate in the
conjugate diluent), incubating the plate at RT for
0.5 h before washing the wells three times, adding
100 ml of substrate solution to each well before
incubating the plate 15 min at RT in the dark, and
then adding 100 ml of stop solution to each well
before measuring absorbance at a dual wavelength
of 450e540 nm in a spectrophotometric plate reader
(Hitachi, Japan).

2.5. Trypan blue staining assay

To evaluate cell proliferation, A7r5 cells were
seeded at a density of 2 � 105 cells/mL in a 12-well
plate. After attachment, cells were incubated with
OA, HG, OH and then treated with acarbose (1 and
3 mM) for 24 h. The trypan blue exclusion assay was
direct identification and calculation of non-viable
and viable cells, respectively. Centrifuge the cell
suspension at 1000�g for 3e5 min and resuspend

the cell pellets in 1 mL PBS. A 100 mL sample of each
cell suspension was an equal amount of 100 mL
trypan blue (Invitrogen) to evaluate live (unstained)
and dead (blue) cells using the Counting chambers
(Paul Marienfeld GmbH & Co. KG) and assessed
under the microscope.

2.6. Transwell migration assay

Cell migration assays were performed using 24-
well plates with Millicell Hanging Cell Culture
Insert with pore size of 8.0 mm (Cat. No.
MCEP24H48). Cells seeded in upper chamber of
each migration well (1 � 104 cells/well) were
induced by (a) OA, (b) HG, or (c) OA and HG
together, treated with various concentrations of
acarbose (0, 1, 3 mM), and then allowed to migrate
for 24 h at 37 �C in 5% CO2. After 24 h, the non-
migratory cells from the upper chambers were
removed and the cells that migrated to the lower
surface were fixed and stained in 5% Giemsa solu-
tion for 1 h. Each plate was placed under a micro-
scope and the number of cells per well migrating to
the lower surface was counted in a fixed area.

2.7. Wound healing assay

A7r5 cells were seeded in six-well plates
(1 � 106 cells/well) for 24 h and grown until 90e95%
confluence was reached. Using serum starvation
medium for 2 h before the monolayer of each well
was straight-scratched using a sterile 200 mL pipette
tip. The unattached cells were removed by washing
with PBS and the remaining cells were treated with
(a) OA, (b) HG, or (c) OA and HG together. Then,

Fig. 1. Cell viability of normal-A7r5 cells treated with different
concentrations of acarbose. A7r5 cells were treated with 0.5, 1, 2, 3
and 5 mM acarbose for 24 h and analyzed by MTT assay. The data are
presented as the mean ± SD from three independent experiments.
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the cells were treated with different concentrations
of acarbose (1 and 3 mM), observed after wounding
at 0, 24, and 48 h, and photographed under a
microscope.

2.8. miRNA extraction and real-time PCR

Total RNA of cells was extracted using Nucleo-
ZOL reagent (MachereyeNagel, Düren, Germany)

according to the manufacturer's protocol. To quan-
tify the expression of miR-143-3p, the TaqMan
Small RNA Assay kit (Applied Biosystems, Carls-
bad, CA) was used to translate RNA to cDNA. The
purity and quantity of miR-143-3p were determined
using Light Cycler Fast Start SYBR Green I Master
Mix (Roche Diagnostics, Mannheim, Germany) ac-
cording to the manufacturer's protocol. The primers
used to amplify miR-143-3p were the miRNA

Fig. 2 Effect of acarbose on migration of A7r5 cells. Normal-A7r5 cells were treated with HG, OA, or OH and acarbose (1 and 3 mM) for 24 h.
Migration was evaluated with the (a) scratch wound assay and (b) Transwell assay. The results of B were consistent with those of A. In the Transwell
assay, cells were seeded in the upper chamber, and cell migration to the lower surface of the membrane was assessed after 24 h. After membrane
fixation and staining with Giemsa, the number of migrated cells was counted under a light microscope. (c) Confocal micrographs showing A7r5 cells
fixed with paraformaldehyde and stained with DAPI (blue, nucleic acid) and phalloidin-TRITC (red, F-actin). The scale bars represent 10 mm.
Representative images of F-actin staining and quantified with fluorescence intensity ratio using ImageJ. The data are presented as the mean ± SD
from three independent experiments. #p < 0.05, # #p < 0.01compared with Ctrl. *p < 0.05 compared with OH group.
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sequence (UGAGAUGAAGCACUGUAGCUCA),
RT primer (GTTGGCTCTGGTGCAGGGTCCGA-
GGTATTCGACACAGAGCCAACTGAGCT), and
forward primer (GAACGTGAGATGAAGCAC-
TGT). RNU6B was used as an endogenous (internal)

control in each sample. After amplification, the
expression level of miR-143-3p was analyzed using
the Light Cycler software.

Fig. 2. (continued).
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Fig. 2 (continued).

Fig. 3. Acarbose reduced the expression of migration-related protein in A7r5 cells. Normal-A7r5 cells were co-treated with acarbose (1 or 3 mM)
and HG, OA, or OH for 24 h. After the cells were harvested, Western blot analyses were conducted with (a) phosphorylated FAK (p-FAK), FAK,
phosphorylated Src (p-Src), Src, MMP 2/9, and b-actin antibodies as described in Materials and methods. Densitometry was used to quantify p-FAK
relative to total FAK, p-Src relative to total Src, and MMP 2/9 relative to the b-actin. (b) Small GTPase protein (Rac1, Rho A, Cdc42), and b-actin
were detected using specific antibodies for each protein. Densitometry was used to quantify Rac1, Rho A, and Cdc42 relative to the b-actin. The
Western blot data are presented as the mean ± SD from three independent experiments. #p < 0.05, compared with Ctrl. *p < 0.05 compared with OH
group.
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2.9. Transfection with miRNA-143 inhibitor or
miRNA-143 mimic

The A7r5 cells were transfected using a Custom
RNA system, the TOOLS Water DNA & RNA
extraction kit (Biotools Co., Ltd., New Taipei,
Taiwan) according to manufacturer's instructions. In
brief, 20 pmol of miR-143 inhibitor/mimic were
respectively added to serum-free media (SFM) and
then mixed with 3 ml/well of T-Pro Non-liposome

transfection Reagent II (NTR II) for 15 min at room
temperature. The mixture was added to each cell,
and the cells were cultured 24 h at 37 �C in a hu-
midified atmosphere of 95% air and 5% CO2.

2.10. Western blot analysis

Total protein was extracted from post-treatment
cell samples by RIPA lysis buffer and centrifuged at
12,000 rpm for 20 min at 4 �C. Protein concentrations

Fig. 4. Acarbose inhibits oleic acid/high glucose-induced proliferation and related protein expression in A7r5 cells. Normal-A7r5 cells were co-
treated with acarbose (1 or 3 mM) and HG, OA, or OH for 24 h and then analyzed by (a) the BrdU assay, (b) Trypan blue assay and (c and d) Western
blot. (a) The BrdU data are presented as the mean ± SD from three independent experiments. P < 0.05 considered statistically significant using one-
way ANOVA, followed by Duncan's new multiple range test. Bars not sharing a common small letter are significantly different from each other. (b)
Cell survival fraction was measured by trypan blue staining to measure viable cells against control. #p < 0.05, compared with Ctrl. *p < 0.05
compared with OH group. (c) Acarbose downregulated expression of Ras, phosphorylated ERK1/2 (p-ERK), ERK, PCNA and b-actin. Densitometry
was used to quantify p-ERK relative to total ERK, Ras and PCNA relative to the b-actin. (d) phosphorylated PI3K (p-PI3K), PI3K, phosphorylated Akt
(p-Akt), Akt, and b-actin. Densitometry was used to quantify p-PI3K relative to total PI3K, p-Akt relative to total Akt. The Western blot data are
presented as the mean ± SD from three independent experiments. #p < 0.05, compared with Ctrl. *p < 0.05 compared with OH group.
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were determined using BCA protein assay kit
(Thermo Scientific). The proteins were separated by
8e12% SDS-PAGE and transferred to nitrocellulose
or PVDF membranes. The membranes were treated
with blocking buffer to block non-specific protein
binding, incubated with primary antibodies at 4 �C
overnight, washed three times with TBST, and
incubated with secondary antibodies at room tem-
perature for 1 h. The protein bands were visualized
with the ECL method, imaged using an LAS-4000
imaging system, and analyzed by densitometry
scanning of image using Multi Gauge V3.0.

2.11. Fluorescence analysis

A7r5 (3 � 105) cells were seeded in six-well plates,
cultured with OA, HG, or OA and HG, and then
treated with acarbose for 24 h, fixed with para-
formaldehyde (4%) in PBS for 15e20 min at RT,
permeabilized with Triton X-100 in PBS for
3e5 min, blocked with bovine serum albumin
(BSA, 3%) for 60 min, stained with TRITC-conju-
gated phalloidin (50 mg/mL) in PBS for 1 h, washed
three times with PBS, and stained to visualize F-
actin microfilaments by confocal fluorescence

Fig. 5 Effect expression of miR-143 on migration in normal-A7r5 cells. (a) Relative expression of miR-143 in normal-A7r5 cells analyzed using
real-time PCR. Each bar represents the mean ± SD from three independent experiments. #p < 0.05, compared with Ctrl. *p < 0.05 compared with OH
group. The migration of normal-A7r5 cells transfected or not transfected with miRNA inhibitor/mimic in the presence of OH and acarbose measured
by the (b) real-time PCR (c) Wound healing assay and (d) Transwell assay. (e) Western blot analysis of Ras, PCNA and FAK protein expression of
normal-A7r5 cells in the presence of OH and A3 (acarbose 3 mM), or with a miR-143 inhibitor/mimic. Densitometry was used to quantify p-FAK
relative to total FAK, Ras, and PCNA relative to the b-actin. (f) phosphorylated PI3K (p-PI3K), PI3K, phosphorylated Akt (p-Akt), Akt, phos-
phorylated ERK (p-ERK), ERK and b-actin. Densitometry was used to quantify p-PI3K relative to total PI3K, p-Akt relative to total Akt, p-ERK
relative to total ERK. The Western blot data are presented as the mean ± SD from three independent experiments. *p < 0.05 compared with NC
(inhibitor or mimic) group.
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microscopy (Nikon, Tokyo, Japan) at 400�or
100�magnification.

2.12. Statistical analysis

All experiments were performed at least three
times. The results are expressed as the mean ± SD
for each group. The Student t-test was performed
using Graph Pad Prism to compare two different
groups. Multiple groups were compared by one-way

ANOVA and the Duncan's new multiple range test.
using SPSS software (SPSS, Inc., Chicago, IL, USA). P
values < 0.05 were considered statistically significant.

3. Results

3.1. Effect of acarbose on cell viability in normal-
A7r5 cells

The cytotoxic effects of acarbose were evaluated
using the MTT assay. Acarbose (0.5, 1, 2, 3, and

Fig. 5. (continued).
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5 mM) for 24 h was not cytotoxic (Fig. 1). Hence, 1
and 3 mM were used to treat normal-A7r5 cells
subsequently.

3.2. Effect of acarbose on migration and
cytoskeleton of A7r5 cells

The VSMC migration is a critical aspect of
atherosclerosis pathogenesis [32]. The effect of
acarbose on normal-A7r5 cell migration under HG,
OA, or OA þ HG (OH) conditions was investigated.
Migration was significantly inhibited by acarbose
(3 mM), increasing wound closure time but signifi-
cantly increasing wound closure in the OH group
(Fig. 2a). The transwell assay was used to further
confirm cell migration is induced by HG, OA, or OH
over a 24-h period. The migration ability cells under
OA þ HG (OH) conditions was significantly
reduced 13.25% and 20.65% after treatment with 1
and 3 mM acarbose, respectively (Fig. 2b). A previous
study indicated that changes in the actin cytoskel-
eton regulated cell migration [33]. To evaluate
whether acarbose mediates cellular motility and
cytoskeletal change, we used phalloidin (F-actin)
and DAPI (nuclei) staining to monitor acarbose-
induced change in cell migration behavior and
redistribution. Confocal fluorescence microscopy

indicated a marked increase in phalloidin staining
after treatment under OH conditions and a decrease
in phalloidin staining after acarbose treatment
(Fig. 2c). These results indicated that acarbose
reduced diabetic condition-induced A7r5 cell
migration.

3.3. Acarbose decreases the FAK phosphorylation
signal in A7r5 cells

Cell migration is controlled by FAK-related signals,
MMPs, Src activation, and small GTPase expression
[34]. We investigated whether acarbose acts through
the same signaling pathway to decrease OH-induced
A7r5 cell migration. Acarbose treatment for 24 h
reduced FAK phosphorylation and the protein levels
of MMP2, MMP9, phosphorylated Src (Fig. 3a), and
small GTPases (Rac1, RhoA, and Cdc42) (Fig. 3b) in a
dose-dependent manner, indicating that acarbose
reduces migration-related signals in diabetic condi-
tion-induced A7r5 cells.

3.4. Acarbose inhibits the proliferation of A7r5 cells

VSMC proliferation plays an important role in the
pathophysiological course of atherosclerosis [35].
The BrdU assay and Trypan blue assay were used to

Fig. 5 (continued).
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assess the relationship between acarbose and the
proliferation of A7r5 cells under diabetic conditions.
Treatment with HG, OA, or OH for 24 h significantly
increased the proliferation of A7r5 cells. However,
acarbose (1 and 3 mM) significantly inhibited the
proliferation of A7r5 cells treated with OH for 24 h
(Fig. 4a and b).

3.5. Acarbose acts through Ras, ERK, and PI3K/Akt
signaling pathway

The activation of ERK and PI3K/AKT signaling
pathways mediated by Ras protein plays a critical
role in the proliferation of VSMCs [11,36]. Western
blotting showed the levels of Ras, phosphorylated
ERK, and PCNA in OH-treated A7r5 cells were
plainly increased in the absence of acarbose and
unequivocally decreased in its presence (Fig. 4c). In

OH-stimulated A7r5 cells treated or not with acar-
bose for 24 h, the levels of PI3K and phosphorylated
Akt were decreased, and OH-induced upregulation
was nullified by acarbose (Fig. 4d).

3.6. Upregulation of miR-143 expression by
acarbose

The potential relevance of miR-143 upregulation
was investigated in OH-induced A7r5 cells before
and after acarbose treatment. As shown in Fig. 5a,
miR-143 expression was clearly increased by acar-
bose. In addition, we used transfected miR-143 in-
hibitor and mimic to the vascular smooth cell to
regulate the expression of miR-143. The results
show that processing miR-143 mimic increased
miR-143 expression. Conversely, transfected miR-
143 inhibitor decreased miR-143 expression
(Fig. 5b).

3.7. Inhibition of miR-143 upgrade VSMC
migration

miR-143 has been demonstrated to regulate
VSMC proliferation and migration [37]. In this
study, miR-143 inhibitor obviously increased cell
migration 24 h after monolayer wounding.
Conversely, the addition of miR-143 mimic inhibits
the ability of cell migration (Fig. 5c). A comparison
of the migration ability of normal-A7r5 cells in the
transwell system before and after transfection with a
miR-143 inhibitor showed that the miR-143 inhibitor
significantly increased cell migration, while the cells
in the miR-143 mimic group had decreased cell
migration (Fig. 5d).

3.8. miR-143 down-regulates Ras signaling

Ras-mediated signaling is regulated via miR-143,
which is highly expressed in mesenchymal cells
such as smooth muscle cells and fibroblasts [31]. To
verify the impact of miR-143 on Ras expression.
Normal-A7r5 cells were treated with miR-143 in-
hibitor/mimic. As shown in Fig. 5e, acarbose pre-
vented the miR-143 inhibitor from upregulating the
expression of Ras and phosphorylated FAK, while
the miR-143 mimic group had downregulating the
expression of Ras and phosphorylated FAK when
compared with control group and NC group.
Furthermore, we also evaluate the mechanism of
PI3K, Akt and ERK in the presence of miR 143
mimic or inhibitor (Fig. 5f). The data demonstrate
that miR-143 regulates the Ras signaling pathway to
affected PI3K/Akt and ERK expression, thereby
regulating A7r5 cell migration and proliferation.

Fig. 6. Schematic diagram of acarbose attenuation of vascular smooth
muscle cell proliferation and migration via miR-143 targeting of
signals.
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4. Discussion

Atherosclerosis is a chronic inflammatory disease.
During the pathogenesis of atherosclerosis, cyto-
kines or inflammatory factors are produced that
enhance vascular smooth cell proliferation and
migration from the arterial media to the intima. In
recent years, obesity in patients with the character-
istics of diabetes has led to an increase in the
severity of atherosclerosis [3,38]. Moreover, micro-
RNAs have been identified as critical players in
VSMC dysfunction and biology [23]. Since high
levels of blood sugar and lipids are responsible for
atherosclerosis pathology, the present study used
oleic acid and high glucose-treated A7r5 cells
experimentally as a diabetic condition model (in
vitro) to identify the specific microRNA regulating
VSMC proliferation and migration.
VSMC is a highly differentiated cell type present

in the medial region of the arteries and arterioles.
In addition, VSMC is considered to play an
important role in the progression of atherosclerosis,
including phenotypic switching, cell proliferation,
migration [32]. In the study, we utilized the trans-
well migration assay to demonstrate that acarbose
reduces the migration of diabetic condition-
induced A7r5 cells and fluorescence analysis of F-
actin to demonstrate that acarbose restores cyto-
skeletal organization. So we illustrated that acar-
bose could regulate migration-related pathways
under experimental diabetic conditions in vitro. The
FAK/Src pathway is a critical regulator of cell
migration. FAK promotes motility by increasing Src
phosphorylation and MMP expression [13]. In our
study, acarbose reduced the protein expression of
phosphorylated FAK, Src, and MMP. Therefore,
acarbose might have attenuated the migration of
diabetic condition-induced A7r5 cells via FAK/Src
signaling. In addition, a small GTPase protein also
participates in cell migration [39]. In this study, by
showing that acarbose decreased RhoA, Rac1, and
Cdc42 signaling, we proved FAK signals and small
GTPases were the targets of acarbose-induced in-
hibition of VSMC migration under diabetic
conditions.
Several studies showed that VSMC proliferation

facilitates atherosclerotic plaque formation [32]. We
used the BrdU ELISA assay and Trypan Blue
staining assay to show that acarbose for 24 h
significantly reduced VSMC proliferation. The
PI3K/Akt pathway is a key regulator of cell prolif-
eration [36]. In the current study, acarbose inhibited
activated PI3K and Akt signals. According to previ-
ous studies, Ras is important in cell migration and

proliferation, while ERK activation and PCNA are
important in proliferation [40]. In the present study,
acarbose inhibited Ras and PCNA expression and
inactivated ERK signaling. Collectively, these find-
ings indicate that acarbose leads to change in VSMC
proliferation under diabetic conditions.
As shown in a 2018 article, miRNAs play a role in

the regulation of critical aspects of atherosclerotic
lesion formation and regression [41]. Previous
studies revealed that miR-143 in VSMCs is athero-
protective, while overexpressed miR-143 can
decrease the proliferation and migration of human
bladder carcinoma cells [42]. However, Kent et al.
reported that inhibition of miR-143 expression by
oncogenic Ras initiated the tumor-promoting feed-
forward pathway [43]. Furthermore, silencing of
miR-143 could promote cell migration [44]. Our
study indicated that miR-143 was significantly
decreased in diabetic condition-induced cells and
that acarbose could increase miR-143 expression.
Moreover, the normal-A7r5 cells in the miR-143
inhibitor group had promoted cell migration, while
in miR-143 mimic group had reduced cell migration.
Therefore, elevated miR-143 can prevent cell
migration. In addition, Chen et al. demonstrated
that Ras upregulation and miR-143 inhibition could
enhance cell migration and proliferation [45]. Taken
together, these findings demonstrate that miR-143
negatively regulates Ras to enhance VSMC prolif-
eration and migration through downstream FAK
signaling.
In this study we provide notable evidence that

acarbose up-regulation of miR-143 reduces VSMC
migration and proliferation via Ras expression and
activation of the FAK and PI3K/Akt signaling path-
ways (Fig. 6). These results suggest that miR-143
could be a new target for the treatment of
atherosclerosis.
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