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Abstract

Hyperthyroidism is a common endocrine disorder associated with increased risk of cardiovascular complications and
mortality. Although antithyroid drugs (ATDs) are approved as first line option for many hyperthyroidism cases,
including pregnancy and childhood, they exert significant toxic profile. Medicago sativa L. (alfalfa) also called “The
father of all food” was among the diet consumed by mares that gave birth to foals with congenital hypothyroidism.
Since, greenfeed was accused for the development of such condition, alfalfa may possess constituents with promising
antithyroid potential that could be a valuable substitute for the conventional ATDs. The current work was designed to
identify the most biologically active antithyroid phytoconstituent separated from alfalfa sprouts and comparing its
antithyroid mechanism, efficacy and toxic profile to the standard ATD; propylthiouracil (PTU). The most biologically
active solvent fractions from alfalfa sprouts extract were identified by in vitro screening for anti-thyroid peroxidase
(TPO) activity, from which different phytoconstituents were separated and identified by interpretation of spectroscopic
data. These compounds were then in vitro screened for anti-TPO and virtually screened via GLIDE XP docking into the
crystal structures of the enzymes; bovine lactoperoxidase, as an alternative to TPO, and mammalian selenocysteine-
dependent iodothyronine deiodinase (IDI), that are both uniquely dually prohibited by PTU. The compound that
showed the least TPO ICs, and highest combined docking XP score was elected for comparing its antithyroid mecha-
nism, efficacy, tendency to reverse hyperthyroidism-triggered complications and toxicity to PTU using L-thyroxine-
induced hyperthyroidism model in rats. Seven compounds (1—7) were isolated from the most biologically active fraction,
whilst, compounds (4—7) were reported for the first time from alfalfa sprouts. Compound 5 (apigenin) showed the least
TPO ICsp and highest in-silico combined score, thus, apigenin was selected for further in-vivo investigations. Apigenin
was found to more effectively interfere with type 1-IDI than with TPO in vivo. Apigenin therapy resulted in nearly
euthyroid state, without incidence of hypothyroidism, thyroid hypertrophy, hepatotoxity or WBCs count reduction. In
addition, apigenin, but not PTU, corrected hyperthyroidism-induced left ventricular hypertyrophy. Therefore, apigenin
is a natural lead antithyroid drug that represents a possible safer alternative to conventional ATDs.

Keywords: Apigenin, hyperthyroidism, Medicago sativa L (alfalfa), thyroid peroxidase, type 1 iodothyronine deiodinase

1. Introduction endocrine disorders worldwide with over-
whelming health consequences [1]. For instance,

S ince, thyroid gland hormones are crucial for  untreated hyperthyroidism is associated with
normal cellular growth and metabolism, their  increased risk of cardiovascular diseases, altered
imbalance is amongst the most common lipid profile, fractures and excess mortality [1, 2].
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Among options for hyperthyroidism treatment
are the antithyroid drugs (ATDs); such as pro-
pylthiouracil (PTU) and methimazole. ATDs are
approved as a first line therapy for hyperthy-
roidism occurring in special patient populations
such as; pregnancy, childhood, adolescence and
for Grave's disease. These drugs are thionamide
derivatives that share the ability to interfere with
thyroid peroxidase (TPO)-mediated iodination of
thyroglobulin tyrosine residues, a crucial step in
the synthesis of thyroid hormones; thyroxine (T4)
and triiodothyronine (T3). PTU possesses an
additional ability to selectively interfere with type
1 iodothyronine deiodinases (IDI-1), responsible
for the conversion of T4 to the active T3 within the
thyroid and in peripheral tissues; liver and kidney
[3, 4]. Unfortunately, significant toxic profile is
documented to ATDs use; extreme risk of devel-
oping severe rapidly progressing liver damage
with subsequent liver failure, obliging liver
transplantation, is reported in most cases using
ATDs. Besides agranulocytosis may develop
which, though being quite low in frequency, is
sudden in onset and life threatening [5]. Either
experiencing side effects or the abrupt discon-
tinuation of the ATDs can bring about lethal
consequences [5, 6]. These facts highlight the ur-

gent need for safer ATDs.

Since early 1980s, many sporadic cases of
congenital hypothyroidism with hyperplastic goiter
in newborn foals have been reported and docu-
mented in Canada, USA and Europe [7-13].
Research concerning the etiology of this condition
excluded genetic causes [9], and suggested a major
role of dietary consumption of greenfeed by preg-
nant mares [10, 13]. Medicago sativa L. (alfalfa) was
among the greenfeed consumed by pregnant mares
producing affected foals [7], suggesting that this
herb may contain constituents with antithyroid po-
tential. Alfalfa has been known since ancient times
for its immense nutritional benefit and hence was
referred to by ancients as “The father of all food”
and nowadays by “The queen of forages” [14]. The
abundance of valuable biologically active phyto-
constituents in this herb encouraged its use in
phytotherapy and folk medicine. For that reason,
Alfalfa was named by the ancient Greeks “the medic
grass” which is “herba medica” in Latin, then the
name “Medicago” was given to this herb [15].
Sprouts (microgreens); edible germinated seeds
harvested before true leaves development, are

picking up an eminent concern due to possessing
higher concentrations of bioactive components and
nutritional characteristics than mature greens [16,
17]. Alfalfa seedlings are well-known for their
health-promoting phytoconstituents such as flavo-
noids, phenolic acids and saponins that exert broad
spectrum of biological activities and protective
mechanisms [18-20]. Sprouting of alfalfa is accom-
panied with increase in its phenolic content [21],
and rapid biosynthesis of biologically active sapo-
nins [22]. Taken together, screening of alfalfa
sprouts phytoconstituents for possible antithyroid
potential may give rise to an efficient antithyroid
therapy with safe profile.

Therefore, the current study aimed at screening
different fractions produced by liquid-liquid frac-
tionation of alfalfa sprout extract for in vitro TPO
inhibitory activity. Identification of phytocon-
stituents separated from fractions with the most
powerful TPO enzyme inhibition activity and eval-
uation of their antithyroid potential was another
goal. The antithyroid potential of these isolated
compounds was estimated by combined in vitro
anti-TPO activity and in silico virtually-screened
dual interaction with the biological targets of PTU;
TPO and IDI-1. We also intended to test antithyroid
efficacy and mechanism of action of the identified
most biologically active compound, using animal
model of hyperthyroidism, by assaying gene
expression of thyroid-derived TPO and hepatic IDI-
1, serum level of thyroid related hormones; thyroid
stimulating hormone (TSH), thyroxine (T4) and
triiodothyronine (T3) and thyroid gland histologic
morphometric analysis. In addition, hyperthyroid-
ism associated complications; dyslipidemia, by
assaying serum cholesterol, HDL-cholesterol and
triglycerides, and left ventricular hypertrophy
(LVH), assessed by morphometric analysis of left
ventricles histopathologically. Further, appraisal of
hepatotoxicity and agranulocytosis development
potential in comparison with PTU was another
scope of the study.

2. Methods
2.1. Materials

Silica gel of 230-400 mesh size and precoated TLC
plates (silica gel 60, GF-245) with adsorbent layer
thickness 0.25 mm was obtained from E- Merck
(Dramstadt, Germany). Sephadex LH-20 was pur-
chased from Sigma-Aldrich (Munich, Germany). L-
thyroxine (Eltroxin™) was from Aspen (Bad Old-
esloe, Germany). PTU (Thyrocil®) was obtained
from Amoun (Cairo, Egypt). Apigenin was
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purchased from Sigma Aldrich (St.Louis, USA).
Amplex™ Ultrared (AUR) was from Thermo Fisher
(Massachusetts, United States). EZNA total RNA
isolation kit was from Omega bio-tek, Norcross,
United States. High capacity cDNA reverse tran-
scription kit, SYBR® green PCR master mix and
SYBR® green RT-PCR reagents kit were from
Applied Biosystems (California, United States). T4,
T3 and TSH Fluorometric Enzyme Immunoassay
(FEIA) assay kits were from Tosoh (Tokyo, Japan).
Alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) colorimetric assay kits were
purchased from N.S. Bio-Tec (Cairo, Egypt). Tri-
glycerides, total cholesterol and HDL-cholesterol
biochemical assay kits were from Biosystems (Bar-
celona, Spain). Other used chemicals were of
analytical grade.

2.2. Animals

The present study was conducted on 40 healthy
female Sprague Dawley rats of a locally bred strain,
weighing 200 + 10 g each. The rats were purchased
from and housed in animal house of Faculty of
Pharmacy, Pharos University in Alexandria (PUA)
(Alexandria, Egypt) under standard environmental
conditions. They were permitted to acclimatize for a
minimum of one week prior to experimentation.
Use of animals and experimental procedures were
approved by the Ethics Committee, Faculty of
Pharmacy, PUA in fulfillment of The NIH Guide for
the Care and Use of Laboratory Animals [23].

2.3. Extraction and Isolation of Biologically-Active
Components of Medicago sativa L. Sprouts

2.3.1. Sprouting of M. sativa seeds

1.7 Kg of M. sativa seeds (obtained from Agricul-
tural Research Centre, Cairo University, Egypt). A
voucher sample of the seeds was kept at Pharma-
cognosy Department, Faculty of pharmacy, Alexan-
dria University (Voucher sample number RS001).
The seeds were washed with deionized water, ster-
ilized using 5% sodium hypochlorite, drained and
then washed with buffered water at pH 7. The seeds
were then soaked in the buffered water for four
hours, transferred to biochemical incubator (Shel
Lab, Sheldon Mfg. Inc., USA) over a layer of moist
filter papers and allowed to germinate under dark
conditions at 22 °C for eleven days. The sprouts
were kept moist by spraying sterile water by mist
generator twice daily.

2.3.2. Identification of the alfalfa sprouts fractions
with highest in vitro antithyroid potential

2.3.2.1. Preparation of alfalfa sprouts extract solvent
fractions. The sprouts of the eleventh day were air-
dried, powdered, soaked twice in 5.5 L EtOH
(70%) each for 12 days at room temperature and
then filtered. The combined filtrate was concen-
trated under reduced pressure to yield the extract
(150 g). The extract was distributed in 30% MeOH
then partitioned with petroleum ether, methylene
chloride, ethyl acetate and n-butanol,
sequentially.

2.3.2.2. In vitro TPO inhibition assay. TPO activity was
assayed using amplex ultraRed assay as described
earlier by Dong et al., with slight modifications [24].
Briefly, thyroid glands from 8 rats were homoge-
nized in extraction buffer composed of 5 mM po-
tassium phosphate buffer (pH 7), 200 mM sucrose,
1 mM EDTA and catalase 500 U/ml, then, centri-
fuged for 10 min at 4000 rpm. Supernatants were
centrifuged, without catalase addition, at 15,000 rpm
at 5°C for 5 min using cooling-centrifuge (Centu-
rion-scientific-K3series, UK). Bradford protein assay
kit (Bio-Basic Inc., Ontario, Canada) was used for
protein quantification according to manufacturer's
instruction. Five pL of thyroid extract was added to
opaque well plates containing 10 mM of AUR and
different plant extract fractions (total volume
200 pL). For each fraction, four different final con-
centrations (0.2, 0.4, 0.8, 1 and 2 mg/mL) in tripli-
cates using PTU as a reference standard at
concentrations of 12.5, 25, 50, 100 and 200 pg/mL.
Hydrogen peroxide (0.3%) was added, plates were
shaken in dark for 30 min then fluorescence was
quantified at 544/590 nm excitation/emission using
a PerkinElmer HTS7000 Bio Assay Reader (Nor-
walk, USA). Determination of ICsy was done by
interpolation of dose-response curves using
GraphPad Prism, version 6.00. ICs, values were
calculated at fitted models, based on a dose-
dependent mode of action, as the concentration of
the tested compound that gave 50% of the
maximum inhibition.

2.3.3. Biologically-guided isolation of alfalfa sprouts
phytoconstituents with antithyroid potential

Since the two fractions with the least TPO ICsq
were the methylene chloride and ethyl acetate
fractions, they were the only fractions subjected to
column chromatography to yield subfractions from
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which different phytoconstituents were separated,
identified and screened for in vitro TPO inhibitory
action.

The CH,Cl, fraction (5 g) was applied to silica gel
column chromatography and eluted with a
CH,Cl,—MeOH gradient solvent (100:0 - 93:7) to
afford three fractions (A, 0.5 g B, 09 g; C, 0.7 g).
Fraction A was separated by preparative TLC on
pre-coated plates using Hexane- Ethyl acetate (8:2)
as the developing system. The band of (Rf = 0.51)
was scraped off and eluted with a mixture of
CH,Cl,—MeOH (1:1) to afford compound 1 (9 mg).
Fractions B and C were separately subjected to
isocratic elution on sephadex LH-20 column using
methanol to afford compound 2 (8.5 mg) from frac-
tion B, and compound 3 (9.5 mg) from fraction C.

The EtOAc fraction (3.1 g) was applied to silica gel
column chromatography and eluted with a
CH,Cl,—MeOH gradient solvent (95:5 - 70:30) to
obtain four fractions (D, 04 g; E, 0.2 g; F, 05 g G,
0.1 g). Fraction D was chromatographed on sephadex
LH-20 column to afford compound 4 (10.5 mg).
Fraction E was similarly treated as fraction D to
afford compound 5 (9.2 mg). Fraction F yielded
compound 6 (12 mg) upon crystallization. Fraction G
was applied to silica gel column chromatography
and eluted with EtOAc- MeOH— H,O gradient sol-
vent (120:5:4 - 45:5:4) to afford compound 7 (11.5 mg).

Identification of the isolated compounds was done
using nuclear magnetic resonance analyses (‘H-
NMR, *C-NMR, COSY, HMQC, and HMBC); using
TMS as a reference standard; were recorded on
Varian AS spectrometer; at 400 MHz (*H) and
100 MHz (*3C).

ICs¢ for TPO of the separated compounds were
subsequently calculated, as mentioned earlier, at
concentrations of 12.5, 25, 50, 100 and 200 pg/mL as
triplicates versus PTU.

2.4. In-silico Virtual Screening of Phytoconstituents
Derived from the Most Biologically-Active M.
Sativa L. Sprouts Fractions

Compounds separated from alfalfa biologically
active fraction were virtually screened for interac-
tion with TPO and iodothyronine deiodinase in
comparison with PTU. The compound with the
highest virtual combined binding score for both
enzymes and in vitro anti-TPO activity will be pro-
moted for in vivo studies.

2.4.1. Hardware setup and molecular docking

All prediction and processes were performed on
an Intel i7-core workstation with 2.5 + GHz, 8 GB of
RAM, and a high-end RADEON graphical process-
ing unit. All programs were run on the Windows 10
Pro platform. Molecular docking was performed
using Schrodinger Maestro 9.1 software package
(LLC, New York, NY).

2.4.2. Ligands preparation

The structures of compounds 1-7 were drawn
using ChemDraw® Professional software 17.1.
(PerkinElmer's). The structures were saved as (.Mol)
files. Ligands were optimized and energetically
minimized through OPLS 3 force field algorithm
embedded in the LigPrep module of Schrodinger
suite. The ionization states of the ligands were
predicted at pH 7 + 2 and Epik tool was selected to
generate tautomers. Ligands were then desalted and
specified chiralities were retained. Structures of
unidentified stereochemistry are automatically
subjected to all possible conformational changes for
selection of best pose. The optimized structures
were saved as maestro format (.mae) to retain 3D
conformers.

2.4.3. Protein structure preparation

X-ray crystal structures of bovine lactoperoxidase
(4gn6) and mammalian selenocysteine dependent
IDI-1 (PDB ID: 4tr3) were imported (as .pdb file)
from the RCSB Protein Data Bank (PDB) (http://
www.rcsb.org/). Preparation of 4tr3 structure and
4gn6 structures was performed using the PrepWiz
module implemented in Schrodinger suite. The
protein was first preprocessed where bond orders
were assigned. All the water molecules beyond 5 A
from the active site were deleted. Hydrogen bonds
were assigned using PROPKA function at PH 7.
Finally, energy was minimized using OPLS 3 force
field. For grid generation; the amino acid residues
involved in iodothyronine binding were selected
[25], while for 4gn6 the grid was generated from the
residues involved in the interaction with the co-
crystallized ligand [26].

2.4.4. Molecular docking of the prepared ligands

The prepared ligands were flexibily docked using
GLIDE docking with extra precision (XP) mode.
Maestro interface was implemented to investigate
the 2D and 3D interactions between the docked
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ligands and the target such as hydrogen bonding,
ion-pairing and hydrophobic interactions.

2.5. Experimental Design for the in-vivo Studies

Apigenin was found to be the compound with the
least TPO ICsy and highest in silico binding score for
TPO and IDI-1 and hence was promoted to in vivo
studying.

2.5.1. Experimental grouping and sampling

Hyperthyroidism was induced in 24 rats using L-
thyroxine at a dose of (600 pg/kg) orally for fourteen
successive days [27]. These rats were randomly
assigned to one of these three groups (each
comprised 8 rats): Positive control rats that did not
receive any treatment (L-thyroxine + no treatment).
PTU-treated (L-thyroxine + PTU) group; rats
received 10 mg/kg PTU intra-peritoneal injection
(i.p.) for 21 successive days [28], and apigenin-
treated (L-thyroxine + apigenin) group; rats
received apigenin orally for 21 successive days (dose
was selected according to a pilot study results).
Positive control group and other treated groups
were compared to 8 plain normal control rats that
received 1 mL distilled water orally for 14 successive
days.

At the end of treatment period, rats were anes-
thetized, and blood samples were withdrawn from
retro orbital venous plexus using capillary hemato-
crit tube. Part of blood samples was collected in
EDTA-coated tubes for white blood cells counting.
Another part was collected in tubes containing clot
activator for sera separation by centrifugation at
3000 rpm for 15 minutes for assaying thyroid gland
related hormones (T3, T4 and TSH), liver function
tests (ALT and AST), and dyslipidemia markers;
triglycerides, Cholesterol and HDL-cholesterol.
After that, animals were sacrificed, then, thyroid
glands and livers were quickly isolated, divided into
halves; half was snap frozen in liquid nitrogen for
RT-PCR assays and the other half was kept in 10%
formal-saline for routine H&E staining. Hearts were
also separated and left ventricles were carefully
detached, blotted and weighed, for the assessment
of LVH, then kept in 10% formal-saline for staining
with H&E and Masson's trichrome (specific stain for
fibrous tissue) for subsequent histopathological ex-
amination and morphometric analysis.

2.5.2. Evaluation of the antithyroid potential of
apigenin versus PTU in-vivo

2.5.2.1. RNA isolation quantitative RT-PCR (qPCR)
assay of TPO and IDI-1. The thyroid gland and

hepatic expression of TPO and IDI-1 was performed
using two step qRT-PCR according to MIQE
guidelines. Total RNA was isolated using the EZNA
total RNA isolation kit (Omega bio-tek, Norcross,
United States) according to manufacturer's in-
structions. The concentration and purity of RNA
were determined spectrophotometrically by
measuring absorbance at 260 and 280 nm. The A260/
A280 ratio of 1.8-2.0 corresponds to 90%-100% pure
nucleic acid. The cDNA was generated using 2 ug of
total RNA in a total volume of 20 uL by reverse
transcription (High capacity cDNA reverse tran-
scription kit; Applied Biosystems, California, United
States). The cDNA is then amplified using IDI-1
primer (forward sequence; 5-TTAGTTCCA-
TAGCAGATTTTCTTGTCA-3’ and reverse
sequence; 5'-CTGATGTCCATGTTGTTCT-
TAAAAGC-3'), TPO primer (forward sequence; 5'-
GTTGTTGCAAGCTCCTGTGA-3' and reverse
sequence; 5'-GCCTTCTTCCCCTTCATCTC-3) and
GAPDH reference gene (forward sequence; 5'-
GACAACTTTGGCATC GTGGA-3' and reverse
sequence; 5-ATGCAGGGATGATGTTCTGG-3).
This was performed by qRT-PCR using SYBR®
Green PCR master mix and SYBR® green RT-PCR
reagents kit (Applied Biosystems, California, United
States) according to manufacturer's instructions.
The data acquisition was collected during the
extension step using Rotor-Gene Q-Pure detection,
software version 2.1.0 (build 9); Qiagen, Hilden,
Germany. The relative expression of target genes
was quantified relative to the expression of the
reference gene in the same sample and expressed as
normalized ratio. This was done by calculating the
threshold cycles (Ct) values of target genes to that of
the reference using AACt method [29].

2.5.2.2. Assessment of T3, T4 and TSH serum levels.
Serum level of T3, T4 and TSH was quantified using
FEIA assay kits based on competitive enzyme
immunoassay according to manufacturer's in-
structions [30].

2.5.2.3. Evaluation of thyroid glands function via histo-
logic morphometric analysis. Formal saline-fixed thy-
roid glands samples were dehydrated and then
paraffin-embedded. Sections (3-4 pum) were cut,
deparaffinized, hydrated using descending grades
of alcohol and then stained by H & E stain. Each
stained section was examined by an investigator
blinded to the experimental group using light mi-
croscope (Inverted Microscope ECLIPSE Ti-S,
Nikon, Japan). The mean cross thickness of follic-
ular lining epithelium, as indicator of thyroid ac-
tivity, was measured in twenty follicles (10 from
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Table 1. TPO ICs, of different alfalfa sprout extract fractions, separated compounds from the most biologically active fractions and of PTU.

Extract Fraction IC5¢ (mg/mL)

Separated Compound

ICso (ug/mL)

Petroleum ether NA

Methylene chloride 1.78 + 0.24 Spinasterol NA
Liquiritigenin 84.37 + 1.34
Isoliquiritigenin 76.55 + 3.87

Ethyl acetate 1.67 + 0.85 4',7-dihydroxyflavone 112.04 + 5.47
Apigenin 41.07 + 1.2
Medicarpin-3-O-3-D-glucoside NA
Medicagenic acid-3-O-3-D-glucopyranoside NA

n-butanol NA — —_—

PTU 42.67 + 3.45

All measurements were done in triplicates and expressed as mean + SD. (NA: not applicable; the compound did not produce an in-

hibition curve, PTU: propylthiouracil).

peripheral zone and 10 from central zone) from each
rat thyroid gland sections for all groups using
Image] software [28].

2.5.3. Assessment of hyperthyroidism-associated
dyslipidemia

Serum triglycerides [31], total cholesterol [32], and
HDL-cholesterol [33] were assayed quantitatively by
spectrophotometric methods using UV spectropho-
tometer (UV-1800, Shimadzu, Japan) according to
their biochemical assay kits instructions.

2.5.4. Assessment of hyperthyroidism-associated LVH

LVH was assessed by measuring wet left ventricle
weight (LVW) in milligrams and calculating the
percentage of the ratio of LVW in milligrams to total
rat body weight (BW) in grams (LVW/BW in mg/g)
[34].

Further assessment of LVH was done via
morphometric analysis histopathologically; Sections
were prepared as mentioned before. The car-
diomyocyte width of 50 cells per each H&E stained
sections of left ventricle samples was measured
under magnification of 400 using Image] software.
The width was measured passing through the center
of the nucleus. Only myocytes with longitudinal
circular midwall muscle bundles were considered.

To identify possible interstitial fibrosis, other
sections were stained by the Masson's trichrome
stain to identify collagen fibers. The amount of
collagen fibers was quantified by analyzing the
amount of blue color in each left ventricle tissue
section using Image] software [34,35].

2.6. Comparing Toxicities Associated With
Antithyroid Therapies

2.6.1. Evaluation of hepatotoxicity biochemically and
histopathologically

ALT and AST were assayed in sera obtained from
all rats of different groups colorimetrically

according to instructions provided by their kits’
suppliers [35, 36].

Further evaluation of hepatotoxicity was per-
formed via histopathologic examination of H&E
stained liver tissue sections. As an indication of liver
damage, the mean width of 20 sinusoidal spaces
from each rat liver tissue sections for all groups was
measured using image] software [28].

2.6.2. Assessing the potential of developing
agranulocytosis

This was performed by counting the number of
white blood cells per cubic centimeter of blood.

2.7. Statistical Analysis of the Data

Data were fed and analyzed using IBM SPSS
software package version 20.0. (Armonk, NY: IBM
Corp) [37]. The Kolmogorov-Smirnov test was used
to verify the normality of distribution. Quantitative
data were described using mean and standard. For
normally distributed quantitative data comparisons
among the different groups were done using anal-
ysis of variance (ANOVA; F test) followed by a Post
Hoc test (Games-Howell) for pair wise comparison.
Significance of the obtained results was judged at
the 5% level [38].

3. Results and discussion

The profound toxicity associated with ATDs,
highlights the need for alternative and safer anti-
thyroid medication [5]. Since alfalfa was among
herbs suspected for developing congenital hypo-
thyroidism in mares [10, 13], it may possess phyto-
constituents with combined efficient antithyroid
activity and safe profile. Alfalfa microgreens
captured great interest in recent years for showing
higher concentrations of the valuable phytochemi-
cals than mature ones [16, 17].Thus, screening alfalfa
microgreens for a possible ATD may be of value
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Fig. 1. Extra-precision (XP) scores in (Kcal/mol) of the docked compounds in to the crystalline structures of lactoperoxidase (4gn6), IDI-1 (4tr3) and

the combined scores for both enzymes.

especially if this drug revealed safer profile than the
standard ATD; PTU.

3.1. Biologically-Guided Isolation of Alfalfa
Sprouts Phytoconstituents with Antithyroid
Potential

The antithyroid potential of all solvent fractions
derived from alfalfa sprouts extract were evaluated
by calculating ICso for TPO (Table 1). Among the
four fractions, the methylene chloride and ethyl
acetate fractions showed TPO inhibitory potential
and thus were chosen for further analysis. Three
subfractions with three different phytoconstituents
(compounds 1-3) and four subfractions with three
different phytoconstituents (compounds 4-7) were
separated from the methylene chloride and ethyl
acetate fraction, respectively.

Based on 'H NMR, APT, HMQC, HMBC and
COSY spectral analyses, supplementary (Tables T1-
T4) and (Fig. 51-535); compounds (1—7) were iden-
tified as spinasterol (1) [39, 40], liquiritigenin (2),
isoliquiritigenin (3) [41-43], 4',7-dihydroxyflavone (4)
[44], apigenin (5) [45], medicarpin-3-O-3-D-gluco-
side (6) [46], and medicagenic acid-3-O-g-D-gluco-
pyranoside (7) [47]. It is worthy to mention that
compounds (4—7) were reported for the first time
from the sprouts of alfalfa.

The in vitro TPO inhibitory activity of the seven
identified compounds was compared to that of PTU.
Among the seven tested compounds, apigenin
(compound 5) demonstrated the highest in vitro
anti-TPO activity (ICsp: 41.07 + 1.2) that was very
close to that of PTU, Table 1.

3.2. In-Silico Virtual Screening of
Phytoconstituents Derived From the Most
Biologically-Active M. Sativa L. Sprouts Fractions

Two molecular targets were selected for in silico
virtual screening of the seven separated com-
pounds; TPO, the main target for all ATDs, and
selenocysteine dependent IDI-1, an exclusive target
for PTU that is responsible for activation of T4 to
produce T3 within the thyroid and in peripheral
tissues [5]. Since lactoperoxidase (LPO) has a well-
characterized crystal structure and shares structural
homology with TPO, it is usually used for studying
drug-TPO interaction [48, 49]. In the current study,
we imply selenocysteine dependent IDI-1 (PDB ID:
4tr3) and LPO (4gn6) for virtual screening.

Compounds (1—-7) were separately docked using
extra-precision (XP) glide docking into the active
binding pockets of (4tr3) and (4gn6). Fig. 1 shows the
results of the molecular-docking simulation per-
formed using the 3D structures of compounds (1—7)
and of PTU on the two selected molecular targets,
together with the combined score. This combined
score gives an insight of a possible equipotency of
the test compound to PTU.

The simulated molecular docking showed that the
highest combined binding score for both enzymes
was attained by apigenin. Apigenin possessed
considerable binding affinity to both targets; 4tr3
and 4gn6 with XP scores —3.2 and —4.8, respectively.
In comparison with PTU, apigenin had higher
binding affinity for 4tr3 (IDI-1) but very close affinity
to 4gn6 (LPO). This indicates that the observed
higher combined score of apigenin compared to
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lodothyronine deiodinase enzyme (4tr3)

Apigenin PTU
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Apigenin PTU

Fig. 2. 2D and 3D interaction diagrams of propylthiouracil and apigenin with lactoperoxidase (4gn6) and IDI-1 enzyme (41r3).

PTU is due to its possible higher inhibitory activity
towards IDI-1. Medicarpin-3-O-6-D-glucoside has
the highest score for 4tr3 binding, however, it totally
lacked binding affinity towards the primary target of
ATDs; 4gn6.

The interactions between apigenin, PTU and the
two target enzymes were analyzed, Fig. 2. Structural
representations of the best conformation of the
complexed active site of LPO (4gn6) with apigenin
and PTU revealed that both of them could success-
fully interact with heme group which is essential for
the activity [48]. As shown in Fig. 2, apigenin is
inserted deeply in the cavity, interacting with
binding pocket amino acid residues Glu 116 and Pro
424 through ionic and H-bond contacts, respec-
tively. In addition to Pi-Pi stacking with Phe 113 and
many other hydrophobic and polar interactions.
PTU unveiled less interactions in the binding cavity
(Fig. 2).

Apigenin interacts via different modes with
numerous amino acid residues present in the cata-
Iytic domain of selenocysteine-dependent IDI-1
(4tr3) as evidenced from Fig. 2. The 5-hydroxyl
group of apigenin formed a hydrogen bond with the
side chain of Glu199 while the 7-hydroxy engaged
with two hydrogen bonds with the backbones of
Glu199 and Phe258. Polar interactions were also

observed with Ser176, His202 and GIn218. In addi-
tion to numerous hydrophobic contacts with 11198,
Ala201, Pro203, Val208, Tyr257, Phe258 and charged
negative interactions with Glu200 and Glu259.
Whereas, PTU exhibited notably fewer interactions
in the binding domain, namely; two hydrogen
bonds with Glu 199, Phe 258; polar interactions with
His202, GIn218; charged negative interaction with
Glu199, Glu200 and hydrophobic interactions with
I1e198, Ala201, Pro203, Tyr257 and Phe258.

3.3. Evaluation of Antithyroid Potential of
Apigenin versus PTU in-vivo

3.3.1. Antithyroid mechanism prediction

In order to conclude the exact antithyroid mech-
anism of apigenin in vivo, gene expression of the
ATDs’ targets; thyroidal TPO and hepatic IDI-1,
were quantitatively assessed using qrt-PCR tech-
nique following 21 days of treatment administration.
It was evident from this experiment that both PTU
and apigenin therapies markedly decreased gene
expression of both targets compared to positive
control rats. However, TPO expression was signifi-
cantly less in PTU-treated group than in apigenin-
treated group, while hepatic IDI-1 expression was
significantly less in apigenin-treated group (Fig. 3A).
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Fig. 3. The effect of apigenin and PTU on thyroidal TPO, hepatic IDI-1 expression and thyroid related hormones levels. A: mRNA expression
of thyroidal TPO and hepatic IDI-1; B-D: serum T3, T4 and TSH, respectively. ANOVA test was used to compare between the different groups with
Post Hoc Test (Tukey).*: Statistically significant at p < 0.05, **: Statistically significant at p < 0.001, N.S: Statistically non-significant (p > 0.05),

p—44Ct,

: normalized expression ratio, n = & all results are presented as mean + SD. (PTU: propylthiouracil, TPO: thyroid peroxidase, IDI-1: type 1

iodothyronine deiodinase, T3: triiodothyronine, T4: thyroxine and TSH: thyroid stimulating hormone).

The observation regarding TPO expression contra-
dicts our in silico and in vitro results that revealed
higher affinity and binding score and less ICs, for
TPO of apigenin than PTU. It can be inferred that
pharmacokinetics of both therapies play a major
role in their effect on TPO in vivo; as PTU is mainly
distributed and concentrated in thyroid gland tissue
and less to hepatic tissue [26], whereas apigenin is
preferably distributed to small intestine and liver
than other tissues [50]. These results indicate that
apigenin is more active against IDI-1 than TPO in
vivo.

3.3.2. Effect on thyroid gland related hormones (13, T4
and TSH) serum levels

With the purpose of confirming apigenin anti-
thyroid mechanism and subsequent antithyroid ef-
ficacy, serum levels of thyroid related hormones
were assayed using FEIA technique. In the present
study, apigenin therapy resembled PTU therapy in
significantly decreasing serum T3 and T4 levels and

increasing TSH level compared to those observed
with untreated rats with induced hyperthyroidism
(p < 0.001) (Fig. 3). Upon comparing hormones level
following apigenin and PTU therapies, PTU-treated
group had significantly less serum T4 levels signi-
fying powerful inhibition of TPO by PTU more than
apigenin in vivo. These results further confirm the
ability of apigenin to selectively interfere with the
peripherally acting enzyme; IDI-1 (which is
responsible for production of active T3 and conse-
quent feedback decrease in TSH level), more than
with thyroidal TPO (responsible for T4 production).
The non-significant difference in serum T3 level
between PTU and apigenin-treated groups verifies
the powerful IDI-1 inhibition by apigenin that
compensated for its less efficacy against TPO in vivo.

Regarding effect of both therapies on serum TSH
level, apigenin therapy was able to almost achieve
euthyroid state, as apparent from the normalization
of TSH level. On the other hand, PTU therapy
resulted in significant elevation of TSH compared to
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Fig. 4. Effect of different therapies on thyroid gland histology. A; H&E-stained thyroid gland tissue sections obtained from rats of different groups.
B; Quantitative analysis of the thickness of thyroid gland follicular lining epithelium. All images were captured under magnification power x400.
Black arrows point to the lining epithelium of the follicles, Red arrow points to scalloping in colloid (C: colloid). The mean cross thickness of follicular
lining epithelium was measured in twenty follicles in thyroid gland sections obtained from each rat for all groups using ImageJ software. ANOVA test
was used to compare between the different groups with Post Hoc Test (Tukey).*: Statistically significant at p < 0.05, **: Statistically significant at
p < 0.001, N.S: Statistically non-significant (p > 0.05), n = 8; all results are presented as mean + SD.

normal rats indicating possible occurrence of sub-
clinical hypothyroidism, as a side effect, empha-
sizing the importance of thyroid hormone
monitoring and subsequent PTU dose adjustment
during therapy [4, 5I.

3.3.3. Evaluation of thyroid glands function via
histologic morphometric analysis

In view of the fact that the thickness of the follic-
ular epithelium and colloid morphology correlate to

the thyroid's functional status [51], H&E-stained
thyroid glands tissue sections of different groups
were examined and follicular size and its lining
epithelial thickness were quantitatively assessed.
Examination of thyroid glands sections obtained
from normal rats revealed normal histological
appearance; follicles appear lined by simple low
cuboidal epithelium with homogenous colloid
including some endocytotic vacuoles found near the
margin of colloid filled lumen. Contrariwise, some
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follicles of positive control rats appear lined with
almost flat cells with relatively less vacuoles with
frequently observed scalloping colloid, Fig. 4. These
observed histopathologic changes indicate success-
ful induction of hyperthyroidism [52]. Quantifica-
tion of the follicular lining epithelium thickness
demonstrates significant reduction in thickness in
rats with induced hyperthyroidism compared to
normal rats further confirming incidence of
hyperthyroidism.

PTU therapy resulted in hyperplasia; increased
cell number, and hypertrophy; increased cell size
and colloid depletion. Follicles are lined with high
cuboidal cells with significantly larger thickness
compared to those of normal rats. PTU ability to
induce hyperplasia and hypertrophy as a result of
the increased production of thyrotrophic hormone
and thyroid hypoactivity is the reason for devel-
oping benign and metastatic tumors in the thyroid
gland upon prolonged administration [53]. These
morphological alterations further intensify the need
for safer alternative therapy. On the other hand,
thyroid gland sections of rats treated with apigenin
showed significant increase in thyroid lining
epithelium thickness compared to those obtained
from positive control rats. Moreover, the mean
epithelial thickness was not significantly different
from that of normal rats. There were many vacuoles
in the uniform colloid which is a sign of decreased
thyroid activity [52], which was confirmed by occa-
sional observation of scalloping colloid. It is note-
worthy to mention that the histopathological
examination results impressively matched our
biochemical findings.

3.4. Evaluation of Hyperthyroidism-Associated
Dyslipidemia

Since thyroid dysfunction have prominent effect
on lipid profile, we compared the effect of the tested
antithyroid medications on the altered lipid profile.
Results of the present work revealed that serum
samples of positive control rats had significantly
higher TG concentration (p = 0.023) and signifi-
cantly less cholesterol and HDL-cholesterol than
those of normal rats (p > 0.001), Fig. 5. Former re-
ports regarding altered triglycerides level in asso-
ciation with hyperthyroidism are conflicting; in
agreement with our results some studies confirmed
triglycerides elevation in patients with hyperthy-
roidism as well as in experimentally induced hy-
perthyroidism [27, 54, 55]. A possible explanation for
this is the increased energy expenditure and hepatic

lipogenesis accompanying hyperthyroidism, most
probably, due to boosted gene expression of lipo-
genesis genes [54]. On the contrary, some studies
reported that triglycerides level is not affected by
hyperthyroidism due to compensatory mechanisms
[56, 57].

On the other hand, our results concerning
decreased cholesterol and HDL-cholesterol levels as
a result of hyperthyroidism are in agreement with
previous studies [27, 57, 58]. The depressed level of
these lipids can be explained by the ability of thy-
roid hormones increase LDL receptors gene
expression that increases cellular uptake of LDL-
cholesterol from circulation resulting in decreased
levels of circulating total cholesterol [58]. In addi-
tion, hyperthyroidism related increase in free T4
level can enhance LDL oxidability. Moreover, high
level of thyroid hormones can stimulate lipoprotein
lipase activity leading to decreased circulating levels
of lipoproteins [58]. Furthermore, this elevated level
of thyroid hormones modify HDL-cholesterol
metabolism by increasing transfer of cholesteryl
esters from HDL to very low density lipoproteins
[57, 58].

Administration of PTU and apigenin therapies for
3 successive weeks showed significant decrease in
the serum TG concentration and significant increase
in serum cholesterol and HDL-cholesterol as

ENormal OL-thyroxine OL-thyroxine BL-thyroxine
-no treatment +PTU + Apigenin

Mean (mg/dL)
8

Cholesterol

Triglycerides HDL-cholesterol

Fig. 5. Effect of different therapies on lipid profile of rats with
induced hyperthyroidism. ANOVA test was used to compare between
the different groups with Post Hoc Test (Tukey).*: Statistically signif-
icant at p < 0.05, **: Statistically significant at p < 0.001, N.S: Sta-
tistically non-significant (p > 0.05), n = & all results are presented as
mean + SD.
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compared to untreated group. Except for HDL-
cholesterol, where serum samples of PTU-treated
group showed significantly less concentration
compared to those obtained from normal rats, there
was no statistically significant difference between
PTU-treated, apigenin-treated and normal control
groups regarding all tested lipid profile parameters,
Fig. 5. Since the tested antithyroid medications; PTU
and apigenin, significantly reduced the elevated
levels of thyroid hormones, the main cause for
dyslipidemia occurence, this consequently normal-
ized the lipid profile. The ability of PTU to
normalize lipid profile during treatment of hyper-
thyroidism was observed in previous investigations
[59, 60]. Apigenin beneficial effects on hyperthy-
roidism associated dyslipidemia was not tested
before. However, its capability to correct dyslipide-
mias associated with other disorders was previously

L-thyroxine-no treatment

proven [61, 62]. This was attributed to upregulating
fatty acid oxidation, tricarboxylic acid cycle, oxida-
tive phosphorylation, electron transport chain and
cholesterol homeostasis gene expression together
with downregulating expression of lipolytic and
lipogenic genes and decreasing activities of triglyc-
eride and cholesterol ester synthesis enzymes in the
liver [60].

3.5. Estimation of Hyperthyroidism-Associated
LVH

Hyperthyroidism is considered an independent
risk factor for cardiomegaly and LVH [63]. In the
current investigation, hyperthyroidism was associ-
ated with significant increase in LVW/BWY%, car-
diomyocyte size (assessed by morphometric
analysis of cardiomyocyte width in H&E stained left
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Fig. 6. Effect of different therapies on left ventricular hypertrophy. A; Upper row shows H&E stained left ventricular tissue sections showing
cardiomyocytes with longitudinal circular midwall muscle bundles obtained from different groups under magnification x400 (double headed white
arrows show examples of some selected sites for measuring myocyte width), lower row shows Masson's trichrome left ventricular-stained tissue
sections under magnification x400. B; assessment of the percentage of left ventricular weight (LVW) in mg relative to total body weight (BW) in g in
different experimental groups. C; Quantification of the mean myocyte width measured in 50 cells per each H&E stained sections of left ventricle
samples using Image] software. D; Quantification of the mean blue color intensity (representing the amount of fibrous tissue) in Masson's trichrome
stained left ventricles sections. ANOVA test was used to compare between the different groups with Post Hoc Test (Tukey). *: Statistically significant
at p < 0.05, **: Statistically significant at p < 0.001, N.S: Statistically non-significant (p > 0.05), n = 8; all results are presented as mean + SD.
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Fig. 7. Effect of different drugs on liver histology and enzymes. A; H&E-stained liver tissue sections obtained from different groups under
magnification power x200. B; biochemical assessment of liver enzymes in sera obtained from rats of different groups (ALT: alanine amino-
transferase, AST: aspartate aminotransferase). C; quantitative estimation of mean hepatic sinusoidal width measured in H & E stained liver tissue
sections using imageJ software. ANOVA test was used to compare between the different groups with Post Hoc Test (Tukey). *: Statistically sig-
nificant at p < 0.05, **: Statistically significant at p < 0.001, N.S: Statistically non-significant (p > 0.05), n = 8; all results are presented as

mean + SD.

ventricular sections) and amount of fibrous tissue
(quantified by analyzing the intensity of blue color
(fibrous tissue) in Masson's trichrome stained left
ventricles tissue sections) compared to normal rats
(Fig. 6). LVH associated with hyperthyroidism is due
to increased supersensitivity of the heart to minimal
changes in serum thyroid hormone levels that cau-
ses cardiac genomic and nongenomic actions
resulting in many hemodynamic and cardiovascular
manifestations of this disease [64]. In addition, thy-
roid hormones elevation stimulates cardiac protein

synthesis leading to a concentric cardiac hypertro-
phy [65]. It should be noted that serum T3, and not
T4, is the primary thyroidal hormone which act on
the heart and that cardiac tissue totally lack intra-
cellular activity of IDI [66]. In the present study, the
prominent increase in left ventricular interstitial
fibrosis was observed accompanying the state of
hyperthyroidism. A study done by Kotajima et al.
confirmed a significant positive correlation between
thyroid hormones and serum level of transforming
growth factor beta 1 (TGF-B1), which is the strongest
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Fig. 8. Effect of different therapies on white blood cell count in rats
with L-thyroxine-induced hyperthyroidism ANOVA test was used to
compare between the different groups with Post Hoc Test (Tukey). *:
Statistically significant at p < 0.05, **: Statistically significant at
p < 0.001, N.S: Statistically non-significant (p > 0.05), n = 8; all results
are presented as mean + SD.

known profibrogenic mediator [67]. Cardiac hyper-
trophy is greatly affected by the production of the
extracellular matrix by fibroblasts mediated by TGF-
B1 [68].

In this investigation, apigenin, but not PTU ther-
apy, significantly reduced LVW/BW%, mean car-
diomycyte width and mean amount of fibrous tissue
in left ventricles compared to untreated group.
Moreover, apigenin-treated group had shown no
significant difference in all assessed parameteres
compared to normal group, Fig. 6. Since there was
no significant difference in mean serum T3 level
between apigenin and PTU-treated groups, other
molecular mechanisms may contribute to the dis-
similar results of both therapies on hyperthyroid-
ism-induced LVH that need extra investigations.
Consistent with our results regarding PTU therapy,
common cardiovascular abnormalities accompa-
nying hyperthyroidism persisted despite effective
PTU antithyroid therapy in L-thyroxine induced
hyperthyroidism in FVB/N male mice [69], in rats
[70] and in patients with overt hyperthyroidism [71].
Concerning the effect of PTU on cardiac fibrosis,
there is a common agreement on the association of
hypothyroidism and cardiac fibrosis [67, 72]. In the
current study, PTU significantly reduced TSH below
normal level and thus it is expected to observe

significant intracellular matrix deposition in left
ventricular tissue as evident in Masson's trichrome
stained tissue sections.

Although the effect of apigenin in hyperthyroid-
ism associated cardiovascular abnormalities was not
tested before. Many studies in other disease condi-
tions proved the favorable effects of apigenin on
cardiovascular illnesses [73-75]. Apigenin attenu-
ated induced myocardial injury in diabetic rats [73].
It also alleviated cardiac remodeling and reduced
cardiac interstitial fibrosis in streptozotocin-induced
diabetic cardiomyopathy [75]. Furthermore, apige-
nin improved hypertensive cardiac dysfunction and
myocardial glucolipid metabolism in a rat cardiac
hypertrophy model induced by renovascular hy-
pertension [74].

3.6. Comparing Toxicities Associated With
Antithyroid Therapies

3.6.1. Evaluation of hepatotoxicity biochemically and
histologically

A significant elevation in serum liver enzymes
compared to normal rats’ level was observed in the
present work (Fig. 7). H&E stained liver tissue sec-
tions obtained from normal rats showed normal
liver architecture with no signs of hepatocyte ne-
crosis, hemorrhage or inflammation. On the other
hand, liver tissues obtained from untreated rats with
induced hyperthyroidism showed signs of liver
damage such as some degree of fatty infiltration,
cytoplasmic vacuolization and nuclear irregularity.
In addition, hepatocytes cell swelling as a result of
defects in cell permeability or mitochondrial
dysfunction was observed. The mean sinusoidal
space width was not significantly different and is
even less than that of normal liver tissues and this
could be due to the noticeable hepatocytes swelling.
Hyperthyroidism-induced hepatotoxicity is due to
increased metabolism with subsequent oxidative
damage to many organs including the hepatic sys-
tems [76]. This induced hepatic dysfunction is pro-
voked by excess T3 which induces hepatocyte
apoptosis resulting in liver dysfunction via activa-
tion of the mitochondrial-dependent pathway [77].

Daily PTU therapy to rats with induced hyper-
thyroidism for 21 days resulted in a non-significant
reduction in ALT or AST levels as compared to
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positive control group. Tissue sections obtained
from rats treated with PTU showed severe liver
damage manifested by massive necrosis and
inflammation. A significant increase in the mean
sinusoidal space width was detected when
compared to that of normal liver sections. PTU-
induced hepatotoxicity is a result of drug induced
idiosyncratic reaction that include allergic reactions
and immune-mediated liver function impairment.
Also, PTU is metabolized into a bioactive metabolite
that is hepatotoxic [78]. Another proposed mecha-
nism is the induced mitochondrial dysfunction by
PTU [79].

Apigenin therapy for 3 successive weeks pro-
duced a significant decrease in the serum ALT and
AST concentrations in comparison with positive
control group and PTU-treated group, Fig. 7. Liver
sections obtained from apigenin-treated rats treated
showed nearly normal liver architecture with some
vacuolated hepatocytes. The mean sinusoidal space
width was comparable to that in normal liver tissue
sections, Fig. 7. Apigenin had hepatoprotective ef-
fects in induced liver damage by modulating meta-
bolic and transcriptional profiles in the liver [61], by
regulating hepatic oxidative stress [80], and
increased the levels of hepatic nuclear factor
erythroid 2-related factor 2-mediated antioxidant
enzymes [81].

3.6.2. Assessing the potential of developing
agranulocytosis

Agranulocytosis development can be predicted by
counting WBCs. Both positive control group and
PTU-treated groups had significantly less WBC
count than that of normal rats, Fig. 8. Hyperthy-
roidism status was found to cause decreases in total
WBC count, neutropenia, thrombocytopenia as a
result of hyperplasia in all myeloid cell lineages. In
addition, T3 is as a precursor for normal B cell for-
mation in bone marrow through pro-B cell prolif-
eration stimulation [82]. On the other hand, the
thioamide group PTU is the cause of its various
hematologic side effects ranging from mild leuko-
penia to agranulocytosis and aplastic anemia [83].
Apigenin therapy significantly restored WBCs count
compared to both positive control group and PTU-
treated group, Fig. 8. Likewise, apigenin did not
alter WBC counts when tested for its antineoplastic
potential in renal cell carcinoma [84], and restored

myeloid series in SCID mice bearing K562 dissem-
inated leukemia model [85].

4. Conclusion

From the aforementioned data, apigenin seemed
to have the highest in silico and in vitro antithyroid
activity among all identified Medicago sativa L.
sprouts phytoconstituents. In vivo studies revealed
that apigenin antithyroid mechanism is via inhibi-
tion of TPO and more prominently, IDI-1. More-
over, apigenin therapy was superior to PTU in
achieving nearly euthyroid state (without incidence
of hypothyroidism or thyroid gland hypertrophy or
hyperplasia). In addition, apigenin, but not PTU,
corrected hyperthyroidism-induced LVH without
noteworthy liver toxicity or reduction of WBCs
count. Thus, apigenin may represent a possible
safer alternative to conventional antithyroid drugs.
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Fig. 526. 'H NMR (500 MHz) spectrum of compound 6 in DMSO-d6.
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Fig. 535. COSY spectrum of compound 7.

Table 1. 'H and 3C NMR data of compounds 1 and 7

Position 1 (CDCly, 7 (MeOH-d4)
éc (ppm) oy (ppm) (int., mult., J (Hz)) oc (ppm) oy (ppm) (int., mult., J (Hz))
1 37.15 1.09 (H-1a, m), 1.82 (H-1b, m) 43.26 1.30 (H-1a, m), 2.10 (H-1b, m)
2 31.49 1.39 (H-2a, m), 1.77 (H-2b, m) 69.75 4.30 (1H, dd, ] = 3.0, 4.0 Hz)
3 71.07 3.61 (1H, m) 84.70 4.10 (1H, d, ] = 4.0 Hz)
4 38.01 1.27 (H-4a, m), 1.70 (H-4b, m) 67.70 —
5 40.2 1.40 (1H, m) 51.62 1.60 (1H, m)
6 29.77 1.22 (H-6a, m), 1.74 (H-6b, m) 20.20 1.20 (H-6a, m), 70 (H-6b, m)
7 117.46 5.16 (1H, br s) 32.25 1.32 (1H, m)
8 139.50 — 39.51 -
9 49.46 1.65 (1H, m) 48.48 1.60 (1H, m)
10 34.20 - 35.90 —
11 21.56 1.48 (2H, m) 2325 2.06 (H-11a, m), 2.16 (H-11b, m)
12 39.47 1.23 (H-12a, m), 2.02 (H-12b, m) 122.10 5.30 (1H, t, ] = 3.4 Hz)
13 43.30 — 143.80 —
14 41.67 —
15 27.30 1.10 (H-15a, m), 1.80 (H-15b, m)
16 55.14 1.81 (1H, m) 22.66 1.60 (H-16a, m), 2.05 (H-16b, m)
17 22.98 1.40 (H-15a, m), 1.52 (H-15b, m) 46.24 -
18 28.52 1.25 (2H, m) 41.35 2.85 (IH, dd, ] = 3.0, 4.0Hz)
19 55.90 1.25 (1H, m) 45.85 1.16 (H-19a, m) 1.70 (H-19b, m)
20 12.00 0.57 (3H, s) 30.23 -
21 13.06 0.80 (3H, s) 3243 1.59 (H-21a, m) 1.80 (H-21b, m)
22 40.84 2.05 (1H, m) 33.52 1.20 (H-22a, m) 1.40 (H-22b, m)
23 21.39 1.03 (3H, d, ] = 6.8 Hz) 181.00 -
24 138.10 5.14 (I1H, dd, ] = 8.8, 15.2 Hz) 12.50 1.40 (3H, s)
25 129.4 5.02 (1H, dd, ] = 8.4, 15.2 Hz) 15.70 1.30 (3H, s)
26 51.26 1.55 (1H, m) 16.20 0.84 (3H, s)
27 31.89 1.55 (1H, m) 25.10 1.18 (3H, s)
28 21.11 0.86 (3H, d, ] = 6.4 Hz) 180.00 -
29 19.01 0.84 (3H, d, ] = 6.0 Hz) 32.21 0.94 (3H, s)

(continued on next page)
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Table 1. (continued) i
Position 1 (CDCl3, 7 (MeOH-d4) 4
- B O
éc (ppm) oy (ppm) (int., mult., J (Hz)) oc (ppm) oy (ppm) (int., mult., J (Hz)) =
30 22.60 0.97 (3H, s) ©
Glu
1 103.47 440 (d, ] = 7.5 Hz, 1H)
2' 73.80 3.26 (1H, m)
3 76.35 3.29 (1H, m)
4 69.63 3.40 (1H, m)
5 76.33 3.39 (1H, m)
6’ 60.86 3.70 (H-6'a, m) 3.80 (H-6'b, m)

Int: integration of the NMR signal (showing the number of H); mult.: multiplicity of the NMR signal; J: coupling constant; s: singlet; bs:
broad singlet; d: doublet; dd: doublet of doublet; m: mutiplet.

Table 2. "H and *C NMR data of compounds 2, 4 and 5 in MeOH-d4

2 4 5

oc (ppm) Oy (ppm) oc (ppm) oy (ppm) oc (ppm)  On (ppm)
2 79.62 (ax.) 5.4 (1H, dd, ] = 13.1, 2.9 Hz) 164.53 - 167.05 -
3 43.56 (eq.) 2.71 (1H, dd, ] = 16.9,2.9 Hz) 103.67 6.69 (1H, s) 102.45 6.61 (1H, s)

(ax.) 3.07 (1H, dd, ] = 13.1, 16.9 Hz)

4 192.07 — 184.11 — 182.50 —
5 128.42 775 (1H, d, ] = 8.7 Hz) 126.27 7.98 (1H, d, ] = 8.7 Hz) 163.50 -
6 110.56 6.51 (1H, dd, ] = 8.7, 2.2 Hz) 115.16 6.93 (1H, dd, ] = 8.7, 2.1 Hz)  98.87 6.23 (1H, d, ] = 2.1 Hz)
7 164.11 - 161.29 - 165.03 -
8 102.47 6.36 (1H, d, ] = 2.2 Hz) 102.15 6.97 (1H, d, ] = 2.1 Hz) 93.75 6.48 (1H, d, ] = 2.1 Hz)
9 169.90 - 160.12 - 159.50 -
10 113.70 - 117.17 — 105.30 —
1 129.98 - 125.11 - 121.98 -
26 127.59 7.38 (2H, d, ] = 8.6 Hz) 127.95 7.9 (2H, d, ] = 8.9 Hz) 128.07 7.88 (2H, d, ] = 8 Hz)
35  114.90 6.88 (2H, d, | = 8.6 Hz) 115.62 6.95 (2H, d, ] = 8.9 Hz) 115.76 6.95 (2H, d, ] = 8 Hz)
4 159.00 - 162.01 — 161.34 —

Int: integration of the NMR signal (showing the number of H); mult.: multiplicity of the NMR signal; J: coupling constant; d: doublet; dd:
doublet of doublet.

Table 4. "H and 3C NMR data of compound 6 in DMSO-dé

oc (ppm) 0y (ppm) (int., mult., J (Hz))

Table 3. "H and 3 C NMR data of compound 3 in DMSO-dé 1 132.45 7.38 (1H, d, ] = 8.3 Hz)
1 126.22 - 4 104.43 6.54 (1H, d, 2.5 Hz)
2,6 131.65 7.78 (2H, d, ] = 85 Hz) 4a 158.80 _
35 116.31 6.84 (2H, d, ] = 8.5 Hz) 6 66.39 3.73 (1H, dd, ] = 11.0, 11.0 Hz, H-6,,)
4 160.74 - 8 191.89 427 (1H, dd, ] = 11.0, 5.0 Hz, H-6,,.)
o 117.91 7.76 (1H, d, J = 15.4 Hz) 6a 40.20 3.59 (1H, ddd, J = 11.0, 7.0, 5.0 Hz)
6 144.60 7.77(1H, d, ] = 15.4 Hz) 6b 119.61 _
6’ 191.89 - 7 125.69 7.24 (1H, d, ] = 8.1 Hz)
1 114.20 - 8 106.61 6.45 (1H, dd, ] = 8.1, 2.5 Hz)
2' 166.29 - 9 161.58 —
3 103.07 6.26 (1H, d, ] = 2.1 Hz) 10 96.72 6.40 (1H, d, ] = 2.5 Hz)
¢ 167.50 - 10a 160.97 —
5 108.75 639 (IH,dd, ] = 89,21 Hz) 114 7821 5.60 (1H, d, ] = 7.0 Hz)
6 133.27 8.15 (1H, d, ] = 8.9 Hz) 11b 114.79 _
2 —OH - 13.67 (1H.s) OCH, 55.74 3.69 (3H, s)
Int: integration of the NMR signal (showing the number of H); 1 100.62 4.80 (1H, d, ] = 7.4 Hz)
mult.: multiplicity of the NMR signal; J: coupling constant; s: 2' 73.41 3.10—3.27 (4H, m)
singlet; d: doublet; dd: doublet of doublet. 3 76.60

& 69.96

5 77.27

6 60.95 3.30 (H-6'a, m)

Int: integration of the NMR signal (showing the number of H);
mult.: multiplicity of the NMR signal; J: coupling constant; s:
singlet; d: doublet; dd: doublet of doublet; m: mutiplet.
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