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ABSTRACT

Fatty acids play critical roles in biological systems. Imbalances in fatty acids are related to a
variety of diseases, which makes the measurement of fatty acids in biological samples
important. Many analytical strategies have been developed to investigate fatty acids in
various biological samples. Due to the structural diversity of fatty acids, many factors need
to be considered when developing analytical methods including extraction methods,
derivatization methods, column selections, and internal standard selections. This review
focused on gas chromatography-mass spectrometry (GC—MS)-based methods. We
reviewed several commonly used fatty acid extraction approaches, including liquid—liquid
extraction and solid-phase microextraction. Moreover, both acid and base derivatization
methods and other specially designed methods were comprehensively reviewed, and their
strengths and limitations were discussed. Having good separation efficiency is essential to
building an accurate and reliable GC—MS platform for fatty acid analysis. We reviewed the
separation performance of different columns and discussed the application of multidi-
mensional GC for improving separations. The selection of internal standards was also
discussed. In the final section, we introduced several biomedical studies that measured
fatty acid levels in different sample matrices and provided hints on the relationships be-
tween fatty acid imbalances and diseases.
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1. Introduction

Fatty acids are essential molecules in biological systems and
have several important biological functions, including being
constituents of cell membranes and regulating the activity of
enzymes and inflammatory processes. Studies have indicated
that imbalances in fatty acids are associated with a wide va-
riety of diseases, such as inflammation [1—3], cardiovascular
disease [4—6], tumorigenesis [7—10] and Alzheimer’s disease
[11,12]. As fatty acids play critical roles in biological systems,
many studies have analyzed fatty acids in various biological
samples, such as plasma, skin, urine, and tissue samples,
using a variety of analytical strategies [13—16].

Fatty acids are carboxylic acids with either saturated or
unsaturated aliphatic chains. They can be divided into four
groups, namely, short-chain fatty acids (<C6), medium-chain
fatty acids (C6—C12), long-chain fatty acids (C13—C21) and
very-long-chain fatty acids (>C22), according to the chain
length. In addition, fatty acids may contain different numbers
of double bonds in their aliphatic chain at different positions,
which results in large families of isomeric fatty acids, e.g.,
geometric isomers and structural isomers. In biological sys-
tems, although fatty acids can be present in their free fatty
acid (FFA) forms, they most often exist in bound forms, such
as cholesterol and phospholipids. The total fatty acids
included FFAs and bound fatty acids. Analytical tools,
including gas-chromatography mass spectrometry (GC—MS),
gas-chromatography with flame ionization detection (GC-
FID), and liquid-chromatography mass spectrometry (LC-MS),
have been used to perform fatty acid analyses [10,17,18]. LC-
MS methods for fatty acid analysis showed some disadvan-
tages such as larger solvent consumption and lower selec-
tivity [19,20]. Compared to GC-FID, GC—MS could provide more
structural information [21,22]. Moreover, GC—MS has well-
established databases for FA identification with higher effi-
ciency and better selectivity compared to GC-FID. As a result,
GC—MS is the most frequently used method for fatty acid
analysis. This article reviewed the GC-MS-based methods
used for fatty acid analysis in terms of their sample prepara-
tion methods, column selection, and recent applications in
biomedical studies.

2. Sample preparation
2.1. Extraction methods

Generally, GC-MS-based analytical methods for fatty acid
analysis included three steps: (1) extraction of the fatty acids
from the sample matrix, (2) derivatization of the fatty acids,
and (3) GC—MS analysis. There are various well-established
extraction protocols, and generally, these extraction methods
could be applied to different types of samples; however, to
achieve the best performance for specific target analytes, some
method optimization is required. Since many parameters such
as instrumental settings would affect the method perfor-
mance, we did not provide quantitative comparison for
different extraction methods. In the following section, we
briefly introduce the frequently used extraction methods.

2.1.1. Liquid—liquid extraction

Liquid—liquid extraction methods are frequently used in fatty
acid analysis using different combinations of organic sol-
vents. The most well-known liquid-based fatty acid extraction
methods adopted in biomedical fields are those proposed by
Folch et al. [23] and Bligh and Dyer [24]. Folch used a mixture of
chloroform and methanol at a ratio of 2:1 (v/v) as the extrac-
tion solvent and a final volume of 20 times the volume of the
tissue sample (1 gin 20 mL of solvent mixture). Then, water or
a salt solution (e.g., 0.9% NaCl solution) was added to cause
phase separation. The lower phase was then collected for fatty
acid analysis. Folch extraction is considered the gold standard
method for lipid extraction. The method described by Bligh
and Dyer is also widely used in fatty acid analysis, and it was
first developed as an extraction approach for determining the
total lipid content in fish muscle. This method is usually
applied to biological samples (e.g., tissue and blood) that
contains ~80% water in the sample, and used chloroform/
methanol/water for extraction to achieve a final ratio with
chloroform/methanol/water 2:2:1.8. This method offers the
advantage of low solvent consumption while still providing
high recovery. However, using chloroform as part of the
extraction solventis a concern due to its high toxicity, making
this method poorly suited for large-scale applications [25].
Therefore, other extraction solvents have been used to replace
chloroform [24,26]. For example, one study proposed the use
of methyl-tert-butyl ether (MTBE), and they claimed that this
method provided faster and cleaner lipid extraction [27]. The
overall recoveries achieved by MTBE method were 90—98%,
which is similar to Folch method. The only one exception was
phosphatidylinositol (PI) standard which showed higher re-
covery by MTBE. In addition, Hara and Radin have proposed a
lipid extraction approach using the low toxicity solvents
hexane and isopropanol [28]. This approach was applied to
both plasma and erythrocytes samples, and was shown to
provide higher extraction recovery for total FA compared to
the Bligh and Dyer method, moreover, the sample preparation
time of this method is comparatively shorter which made this
method be more efficient [29,30]. Another chloroform free
lipid extraction method, butanol:methanol (BUME) method,
was also used for extracting FA. This method included an
initial one-phase extraction with 300 pL butanol:methanol
(3:1) mixture followed by a two-phase extraction with 300 pL
heptane:ethyl acetate (3:1) and 300 puL 1% acetic acid [31]. Since
BUME did not use chloroform for extraction, this method is
more environment-friendly and also less toxic. If there is a
specific requirement to analyze FFAs from biological samples,
further isolation procedures (e.g., lipid fractionation) or a
specific extraction approach may be necessary [32]. For
example, Han et al. used both potassium hydroxide/methanol
and hexane to separately extract esterified fatty acids and
FFAs from plasma samples [33]. This approach could be used
to determine both FFAs and esterified fatty acids with a small
volume of samples. Alternatively, FFAs could be specifically
isolated using a solid-phase extraction (SPE) approach (with
aminopropyl-silica cartridges) or solid-phase microextraction
(SPME), which are introduced in the following section [34].
Some studies have applied an additional saponification step
after lipid extraction to separate FA from other lipids by
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cleaving the ester bond between the fatty acid moiety and the
glycerol part [35,36].

To improve extraction speed or reduce solvent consump-
tion, some modified approaches have been proposed. Liu et al.
used ultrasonic-assisted extraction (UAE) to extract fatty acids
from tissue samples [37]. They evaluated their extraction
procedure in the extraction of 16 FFAs from liver samples.
They optimized the parameters of extraction time, extractant
volume and ultrasound power level. The recoveries of this
method ranged from 87 to 120%, and their results indicated
that this method was comparable to conventional
liquid—-liquid extraction method but with the advantage of
being more environmentally friendly due to the lower solvent
consumption. The microwave-assisted extraction (MAE)
approach has the advantages of being fast and robust and
consuming a small amount of solvent. Several studies have
used MAE to extract fatty acids from biological samples
[38—40]. Costa et al. developed and validated an MAE method
for lipid extraction from fish samples [40]. Their result showed
that the contents of each fatty acid and the total lipid contents
were similar between Folch and MAE method. They indicated
that compared to the Folch method, MAE is a relatively fast
and robust technique with lower solvent consumption.
Although there were some concerns about the stability of the
fatty acids during microwave treatment, their results indi-
cated that there were no significant differences in the con-
tents of any of the fatty acids between the Folch extraction
method and MAE method.

2.1.2.  Solid-phase microextraction

Solid-phase microextraction (SPME) has been used to extract
FFAs since 1995 [41]. SPME is a fast, simple and solvent-free
sample preparation approach. Fiorini et al. improved the ef-
ficacy of headspace SPME by using a salting out system, and
this method could measure both short-chain and medium-
chain fatty acids in the free form [42]. Sodium chloride
(NaCl) and sodium sulfate (Na,SO4) are commonly used
salting-out reagents in SPME systems. Fiorini et al. used a
combination of (NH4),SO4/NaH,PO, as the salting-out reagent
to improve the recovery for SPME. They used both biological
samples (rat feces) and food samples (cheese and wine) to
prove the applicability of the method and demonstrated the
improvement in sensitivity.

2.2. Derivatization methods

Derivatization is usually necessary for fatty acid analysis by
GC—MS, especially for fatty acids with carbon numbers larger
than 10. Fatty acids are commonly derivatized to form fatty
acid methyl esters (FAMEs), which are then detected by
GC—MS. In this section, we introduced the methods frequently
used for fatty acid derivatization. Generally, acid derivatiza-
tion methods can be applied to total fatty acids (including FFA
and esterified fatty acids); however, basic derivatization
methods are limited to esterified fatty acids [43].

2.2.1. Acid derivatization methods
The commonly used acid derivatization reagents are hydro-
chloric acid (HCI), acetyl chloride (CH3COCI), sulfuric acid

(H,S04), and boron trifluoride (BF3). HCl derivatization is one of
the most commonly used fatty acid analysis methods because
of its operational simplicity [44,45]. In HCl derivatization,
methanolic HCl is added to the dried lipid extract, and the
solution is heated for a certain period. However, due to the
solubility of certain lipids in methanolic HCI, the addition of a
second solvent before the derivatization step may be neces-
sary [44]. The acetyl chloride derivatization method was
introduced in 1986 [46—48]. When using this method, acetyl
chloride is added to the sample containing methanol, and the
sample is generally heated at 95—-100 °C for 60 min. After
derivatization, the samples are neutralized, and the FAMEs
are extracted with an organic solvent for further GC analysis.
Some potential problems and safety issues may need to be
considered when using the acetyl chloride derivatization
method. For example, acetyl chloride derivatization is an
exothermic reaction, causing the sample spill out of the vial,
which could be dangerous. In addition, some polyunsaturated
fatty acids (PUFAs) are relatively unstable at the high tem-
peratures required for derivatization, which could lead to
inaccurate quantification results [49]. The H,SO, derivatiza-
tion method has also been widely used for the analysis of fatty
acids in biological samples [50,51]. The reaction procedure is
similar to that of other derivatization methods. Because H,SO4
is a strong oxidizing agent, this method is not recommended
for PUFA analysis [52]. The BF; derivatization method has been
used for fatty acid analysis for the last several decades, and it
is now widely used for derivatizing various biological samples
[53—55]. This protocol has the advantage of a short reaction
time, and previous studies have shown that after adding the
BF3;-methanol reagent, the reaction could be completed within
10 min. When using the BF; derivatization method, the lipid
extract is first dissolved in an organic solvent. Generally, the
derivatization is performed by adding BF;-methanol reagent
(14%, w/v) and heating at 80—100 °C for 45—60 min. Finally, the
FAMEs are extracted with an organic solvent and analyzed by
GC. Although the BF; method provides efficient derivatization,
its instability and the formation of artifacts have been sub-
jects of concern in several studies [56—58]. To summarize,
acidic derivatization approaches are commonly used for bio-
logical samples and have many advantages; however, the
potential for altering the isomer distribution of the conjugated
system remains a concern [57,59]. Stability evaluations for
each fatty acid are suggested prior to the application of these
techniques in biomedical analysis. Moreover, some of the
artifact formation during acid derivatization could be reduced
by avoiding using high reaction temperatures or amounts of
derivatization reagent, or adding some dimethyl sulfoxide
(DMSO) or dimethylformamide (DMF) during the reaction
[60—62].

In addition to being derivatized after lipid extraction, the
HCl, acetyl chloride, H,SO4 and BF; derivatization methods
could also be used for one-step extraction-derivatization
approach [46,63—65]. Previous study has investigated the ef-
ficiencies of direct derivatization and conventional derivati-
zation procedures, including the extraction of the lipids by the
Folch method followed by derivatization. The results showed
that similar FAME profiles were obtained from the two ap-
proaches. Moreover, a higher recovery of the total FAMEs was
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achieved in the one-step approach [63]. This direct derivati-
zation, which bypassed the extraction steps, is especially
beneficial for large sample analyses in many clinical studies.

2.2.2. Basic derivatization methods

Basic derivatization methods offer the advantages of short
derivatization times, no double bond isomerization issue,
easy operation and uses less aggressive reagents, however,
they are not suitable for derivatizing FFAs [57,59,66—68]. The
sodium methoxide (NaOCHj;) derivatization method has been
used in several studies [69,70]. Typically, 0.5 M NaOCHj; in
anhydrous methanol is added to the lipid extract, and the
solution is reacted at 45 °C for 5 min. NaHSO, (15%) is then
added to neutralize the mixture. Finally, the FAMEs are
extracted with an organic solvent and analyzed by GC. Po-
tassium hydroxide (KOH) can also be used in basic derivati-
zation methods. The protocol is quite simple, and the reaction
time is quite short [71]. When using KOH, methanolic KOH
(2 mol/L) is added to the lipid extract, and the mixture is
incubated at room temperature or heated to 50 °C for a few
minutes for fatty acid derivatization. Then, sodium bisulfate is
added, and the supernatant is collected and analyzed by GC
[72].

2.2.3. Other derivatization methods
In addition to acid and basic derivatization methods, other
derivatization strategies have also been proposed. Trime-
thylsulfonium hydroxide (TMSH) allows rapid derivatization
in only one step without any further extraction and shows the
ability to reduce the artifact compared to the acidic derivati-
zation method [73,74]. This method has been used to investi-
gate the fatty acid profiles of neutral lipids, FFAs and
phospholipids in human plasma [75]. Due to the simplified
protocol, this method was useful for large batch analysis, but
the limit of the TMSH method is the insufficient derivatization
efficiency for PUFA [74,76]. For studies specifically interested
in free fatty acids, pentafluorobenzyl bromide (PFB—Br) is
recommended. This method converts fatty acids into halo-
genated derivatives, which can be easily detected by negative
chemical ionization (NCI) GC—MS [77]. The PFB-Br derivatiza-
tion method was first introduced by Kawahara in 1968 and
was specifically used for FFA analysis [78]. Briefly, a mixture
containing PFB-Br and N,N-diisopropylethylamine (DIPEA) at a
ratio of 1:1is added to dried lipid extract. The derivatization is
performed at room temperature for 15—30 min and produces
the pentafluorobenzyl esters of fatty acids (PFB—FAs) [79].
Since numerous derivatization methods can be used for
fatty acid analysis, it is better to understand the pros and cons
of each method and to consider the limitations of the
methods. In addition, the derivatization conditions can be
optimized to meet the needs of a specific application. Oster-
mann et al. compared different fatty acid derivatization
methods, including TMSH derivatization, BF5; derivatization,
HCI derivatization, KOH derivatization, combined NaOH + BF3
derivatization, and direct TMSH derivatization, with plasma
and tissue samples as well as fatty acid standards. The stan-
dards they used included saturated/unsaturated FFAs, phos-
phatidylcholine  (PC), cholesterol ester (CE) and
triacylglycerols (TG) [72]. Their results indicated that each
method has its own limitations; for example, derivatization

with KOH has good efficiency for the fatty acids in PC and TG
but failed to derivatize the FFAs and fatty acids in CE. The
results of their comparison using plasma samples suggested
that MTBE/methanol extraction followed by HCI derivatiza-
tion was good for all the tested lipid classes. Our group also
compared different derivatization methods, including HCI
derivatization, H,SO, derivatization, BF; derivatization, acetyl
chloride derivatization, and sodium methoxide derivatization,
for the analysis of fatty acids in human plasm samples [80].
Our results showed that acetyl chloride derivatization has
high derivatization efficiency and the lowest cost. We vali-
dated this method and then applied it to the investigation of
potential breast cancer biomarkers in plasma samples. The
results indicated that acetyl chloride derivatization provided
the advantages of good accuracy and precision, which is
important for clinical sample analysis [80]. In addition, we
used a modified acetyl chloride derivatization method to
achieve differential labeling by derivatization with unlabeled
(DO) or deuterated (D3) methanol of pooled control and pooled
test samples. This method allows the efficient and economical
comparative analysis of fatty acids [81]. Selected fatty acid
derivatization methods and their reaction conditions are lis-
ted in Table 1 [10,13,22,33,36,44,46,47,50,69,70,75,79,82—99].

3. GC column selection

A suitable column with good separation is essential for
analyzing isomeric mixtures of fatty acids. Many columns
have been demonstrated to be effective for separating fatty
acids with different chain lengths, degrees of saturation,
double bond locations, and cis or trans isomers. High-polarity
columns such as HP-88 column (88% - cyanopropyl aryl-pol-
ysiloxane), DB-FFAP column (nitroterephthalic acid-modified
polyethylene glycol) and SLB-IL series columns (ionic liquids)
are commonly used for fatty acid analysis in biological sam-
ples [46,100,101]. Previous studies have indicated that ionic
liquid (IL) columns provide better selectivity than wax or
cyanopropylsiloxane columns for FAME mixtures. Moreover,
IL columns can separate geometric and positional fatty acid
isomers [102,103]. Zeng et al. characterized the FAME reten-
tion behaviors of various IL columns. They compared IL col-
umns including SLB-IL59, SLB-IL60, SLB-IL61, SLB-76, SLB-82,
SLB-100 and SLB-IL111 as well as a SLB-5ms. The total ion
chromatograms of C18 to C24 obtained from the different
columns are shown in Fig. 1, and the peak details are listed in
Table 2 [104] (Fig. 1 and Table 2 were adapted from Ref. [104]).
Several FAME geometric isomers, such as C18:2n6t and
C18:2n6c, could not be separated by a nonpolar column (SLB-
5ms), while better resolutions could be obtained on ionic se-
ries columns. In addition, imidazolium-based SLB-IL82, SLB-
IL100, and SLB-IL111 columns provided better resolution of
cis and trans isomers than phosphonium-based SLB-IL59, SLB-
IL60, SLB-IL61 and SLB-IL76 columns, which is consistent with
a previous report that IL columns with an imidazolium instead
of a tripropylphosphonium moiety formed stronger in-
teractions with polar compounds, resulting in better selec-
tivity [104,105]. Weatherly et al. also compared several IL
columns. For the cis and trans separation, they used C18:2 as a
test standard, their result was similar to previous studies
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Fig. 1 — A comparison of the separation performances of different columns. Total ion chromatograms of the C18 to C24
region by using (A) 5 m s (B) IL59 (C) IL60 (D) IL61 (E) IL76 (F) IL82 (G) IL100, and (H) IL111 columns (This figure is reprinted
from Ref. [104] with permission.)
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Table 2 — List of the peaks illustrated in Fig. 1 (This table is reprinted from ref. [104] with permission.)

Peak no. FAME compounds Abbreviations
1 Stearic acid C18:0
2 Elaidic acid t9-C18:1
3 Oleic acid c9-C18:1
4 Linolelaidic acid t9,t12-C18:2
5 Linoleic acid 9, c12-C18:2
6 y-Linolenic acid ¢6,c9,c12-C18:3
7 a-Linolenic acid ¢9,c12,c15-C18:3
8 Arachidic acid C20:0
9 cis-11-Eicosenoic acid c11-C20:1
10 cis-11,14-Eicosadienoic acid ¢11,c14-C20:2
11 cis-8,11,14-Eicosatrienoic acid ¢8,c11,c14-C20:3
12 cis-11,14,17-Eicosatrienoic acid c11,c14,c17-C20:3
13 Arachidonic acid (AA) c5,c8,c11, c14-C20:4
14 cis-5,8,11,14,17-Eicosapentaenoic acid (EPA) EPA
15 Heneicosanoic acid C21:0
16 Behenic acid C22:0
17 Erucic acid c13-C22:1
18 cis-13,16-Docosadienoic acid ¢13,c16-C22:2
19 cis-4,7,10,13,16,19-Docosahexaenoic (DHA) DHA
20 Tricosanoic acid C23:0
21 Lignoceric acid C24:0
22 Nervonic acid c15-C24:1
show that the cis and trans isomer of C18:2 could be baseline —
separated on SLB-IL 59 and SLB-IL60. Moreover, this study 4. Fatty acid internal standards

included SLB-IL 65 and SLB-IL 111 as well; in the four evaluated
SLB-IL columns (SLB-IL 59, SLB-IL 60, SLB-IL 65, and SLB-IL 111)
only SLB-IL 65 failed to separate the C18:2 isomer [106]. To
summarize, high-polarity columns such as HP-88 column and
DB-FFAP column are capable to separate fatty acids with
different carbon chain length. Ionic liquid series columns
(especially SLB-IL82, SLB-IL 110, SLB-IL111) are especially
useful for separating fatty acid isomers.

3.1. Multidimensional GC

Multidimensional GC (MDGC) approaches, such as two-
dimensional GC (GCXGC) and heart-cut MDGC, have recently
attracted substantial interest. MDGC could provide greater
resolving power and enhance peak capacity and sensitivity.
The GCXGC technique has been used for determining fatty
acid components in several types of samples, including
cultured mammalian cells, animal tissue samples and lanolin
[35,107,108]. Zeng et al. demonstrated an integrated GC system
incorporating GCXGC and MDGC for analyzing fatty acids in
fish oil and dairy milk fat samples [109]. They applied different
IL columns using MDGC to increase the number of isomeric
compounds identified. Compared to conventional 1D GC sys-
tems, this approach could provide more reliable data with a
relatively shorter analysis time. Payeur et al. used GCXGC
system to identify fatty acid composition in insulin secreting
cells, and their results show that this system could largely
increase the number of identified fatty acids [35]. To sum-
marize, MDGC strategies have many advantages such as
shorter analytical time and improved separation which could
additional facilitate FA identification It is anticipated that
these techniques would be beneficial for fatty acid profiling in
complex biological samples.

To acquire accurate and precise quantification results, inter-
nal standards are commonly used in biomedical analysis.
Since fatty acids are diverse compounds, using stable isotope
internal standards for each analyte is not cost effective and
the relevant compounds may not even be commercial avail-
able. In previous studies, fatty acids with an odd number of
carbons (such as C13:0, C17:0, C19:0 and C23:0) were
frequently applied as the internal standards [37,48,76,110].
These fatty acids are not endogenous compounds and thus
could be added during the sample preparation steps and used
to correct potential variations in the experiments.

5. Fatty acid analysis in biological samples

Fatty acids play important roles in many biological systems.
Many studies have analyzed the fatty acid levels in various
biological samples, such as plasma, red blood cells, sweat, and
saliva. In the following section, we discuss several previous
studies that measured fatty acid levels in different types of
sample matrices, and list several dysregulated fatty acids in
different biological samples and the corresponding diseases in
Table 3.

5.1.  Plasma samples

Plasma is the most frequently used sample type in biomedical
studies on fatty acids. Abdelmagid et al. analyzed 61 different
kinds of fatty acids in a large cohort (n = 826), and their results
provide foundational knowledge regarding a broad panel of
circulating fatty acids, which may be helpful for further fatty
acid-related biomedical studies [111]. Previous studies have
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Table 3 — Selected examples of dysregulated fatty acids in biological samples and the associated diseases.

Disease Dysregulated fatty acid Sample Reference
Breast cancer C14:0, C16:0, C18:0, C18:2, C18:3 C20:5 serum [10]
Breast cancer C16:0, C18:0, C18:1n9c, C18:2n6, C20:0, C20:4n6, C22:0, C22:6n3, C24:0, plasma [80]
C24:1n9
Breast cancer C14:0, C17:0, C18:1, C20:0 serum [113]
Breast cancer C18:2w6, C18:1n-7 serum [114]
Prostate cancer long-chain w-3 polyunsaturated fatty acids (20:5w3; 22:5w3; 22:6w3) plasma [115]
Prostate cancer C16:1n-7 blood [116]
Colorectal cancer PUFAs plasma [117]
Colorectal cancer PUFAs, C18:3n3, C18:2n6 plasma [118]
Lung cancer FFA: C20:4n6, C18:2n6 serum [8]
Lung cancer FFA: C16:1, C18:3, C18:2, C18:1, C20:4, C22:6 serum [119]
Pancreatic cancer n-3 fatty acid plasma [120]
Multiple myeloma saturated and n-6 polyunsaturated fatty acids plasma [121]
Normal aging and C22:6n-3 blood [122]
neurodegenerative
diseases
Alzheimer’s disease/ C20:5n-3, C22:6n-3, total n-3 fatty acids plasma [11]
Dementia/Cognitive
impairment
Alzheimer’s disease C14:0, C16:0, C18:1, C18:3, C22:6 serum [87]
Alzheimer’s disease/Mild FFA: oleic acid isomers and omega-6 fatty acids omega-3 fatty acids plasma [123]
cognitive impairment
Metabolic syndrome C14:0, C16:0, C16:1n-7, C18:2n-6 plasma [112]
Metabolic syndrome C16:1n-7, C20:4n-6, C22:5n-6 plasma [124]
Diabetes mega-6 polyunsaturated fatty acids (n-6PUFA), omega-3 polyunsaturated blood [125]
fatty acid (n-3PUFA), C24:0
Diabetes C16:0, C18:0, C18:1n-9 plasma [88]
Diabetes C10:0, C14:0, C16:1n-9, C16:0, C18:2, C18:1, C18:0, C20:4, C20:5, C20:3, C20:2, plasma [33]
C22:6
FFA: C10:0, C16:0, C18:2, C18:1, C18:3, C18:0, C20:4, C20:3, C20:2, C20:0,
C22:6
Diabetes FFA: C18:1, C18:2, C18:3 serum [89]
Heart failure FFA plasma [126]
Cirrhotic monounsaturated FA, n-6 polyunsaturated FA, n-3 polyunsaturated FA, plasma [127]
Liver disease the sums of nonessential/essential fatty acids,(n-7+n-9)/(n-3-+n-6) plasma [128]
Nonalcoholic C20:4, C22:6 plasma [129]
steatohepatitis
Ischemic stroke palmitoleic acid, linoleic acid plasma [130]
Dengue fever C14:0, C15:0, C16:1, C16:0, C18:3n6, C18:2n6, C18:1n9, C18:0, C20:4n6, blood [96]
C20:3n3, C20:2, C22:6n3
Inflammatory omega-3 fatty acid red blood cell [132]
Schizophrenia PUFA red blood cell [138,139]
Schizophrenia C22:5n3, C22:6n3 and C20:4n6 red blood cell [134]
Sjogren’s syndrome FFA saliva [141]

discovered that fatty acid levels in plasma are closely related
to many diseases, such as metabolic syndromes, several
chronic diseases, Alzheimer’s disease, and cancer. In Table 3,
although various biological samples have been used to study
the relationship between dysregulated fatty acids and the
disease, plasma is still the most commonly used biological
sample. Table 3 summarizes the dysregulated fatty acids in
plasma/serum/blood samples and the corresponding diseases
[8,10,11,33,80,87—89,96,112—130]. Jordi et al. showed that
relative to healthy controls, higher levels of C14:0, C16:0, and
C16:1n-7 and lower levels of C18:2n-6 were observed in people
with metabolic syndromes [112]. Lv et al. indicated that the
concentrations of C14:0, C16:0, C18:0, C18:2, C18:3 and C20:5
were significantly different between breast cancer patients
and healthy controls [10].

5.2.  Red blood cell (RBC) samples

Recently, many studies have investigated the fatty acid pro-
files of red blood cells [131-134]. Compared to plasma sam-
ples, the fatty acid compositions of red blood cell membranes
could reflect longer-term (up to 2—3 month) dietary intake
[135—137]. It has been found that the fatty acid profiles of red
blood cells are related to inflammation and several mental
diseases, such as schizophrenia and autism spectrum disor-
ders. Fontes et al. observed modest inverse associations be-
tween the levels of omega-3 fatty acid in the RBCs and several
inflammatory biomarkers [132]. Many studies have observed
the depletion of polyunsaturated fatty acids (PUFA) in eryth-
rocytes of schizophrenia patients [138,139]. Hoen et al. per-
formed a meta-analysis on the relationship between the
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PUFAs measured in erythrocyte cell membranes and schizo-
phrenia and found that decreased levels of C22:5n3, C22:6n3
and C20:4n6 are associated with schizophrenia [134]. Bystricka
et al. reviewed the GC-based analytical approaches for fatty
acid analysis in human erythrocyte membranes [140]. This
review summarized the analytical strategies for erythrocyte
membranes, including erythrocyte membrane isolation, lipid
extraction, fatty acid derivatization and GC analysis.

5.3. Saliva samples

The concentrations of FFAs in saliva are thought to be associ-
ated with several diseases, such as cystic fibrosis and Sjogren’s
syndrome [141]. Kulkarni et al. used the PFB-Br derivatization
method to analyze salivary FFAs. They identified 16 FFAs in
human saliva samples and mentioned that the fatty acids in
the saliva included four major FFAs, C16:0, C18:2, C18:1, and
C18:0 [79]. Moon et al. used N-tert-butyldimethylsilyl-N-meth-
yltrifluoroacetamide (MTBSTFA) to derivatize fatty acids in
relatively small volumes (100 uL) of saliva samples [142]. In their
study, C12:0 and C14:0 were quantified in all samples, and
C16:1, C18:0, C18:1, and C18:2n6 could be quantified in >40% of
saliva samples. This optimized and validated method could be
used to investigate the FFA levels in small volumes of saliva.

6. Conclusion

Fatty acids play important roles in many biological systems,
and the dysregulation of fatty acids is associated with many
diseases. Accurate and efficient analytical methods are
essential for elucidating the mechanism of fatty acid
dysregulation-associated diseases and advancing the use of
these fatty acids as clinical therapeutic markers. This review
has summarized the commonly used GC-MS-based analytical
strategies for fatty acid analysis and their applications in
analyzing biological samples. There is no perfect approach for
all kinds of fatty acids and sample types. Not only the sample
type but also the properties of the target analyte must be
considered when developing analytical methods. More so-
phisticated analytical strategies for fatty acid analysis are
anticipated to provide a more comprehensive understanding
of the biological functions of these compounds and increase
their clinical usage.
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