Method of Test for Cu-pyropheophytin A in Edible Oils

1. Scope

This method is applicable to the determination of Cu-pyropheophytin a, the major copper chlorophyll, in edible oils.

2. Method

After extraction and purification, Cu-pyropheophytin а is determined bv (HPLC) high-performance liquid chromatography and confirmed liquid bv chromatography/high resolution tandem mass spectrometry (LC/HRMS²) or liquid chromatography/ tandem mass spectrometry (LC/MS/MS).

2.1. Equipments

2.1.1. High-performance liquid chromatograph

- **2.1.1.1.** Detector: photodiode array detector.
- **2.1.1.2.** Column: GL Sciences InertSustain C18, 2-µm, 2.1-mm i.d. × 10-cm, or an equivalent product.
- 2.1.2. Liquid chromatograph/high resolution tandem mass spectrometer
 - 2.1.1.1. Ion source: negative ion atmospheric pressure chemical ionization, APCI.
 - **2.1.1.2.** Column: HALO C18, 2.7-µm, 4.6-mm i.d. × 10-cm, or an equivalent product.
- 2.1.3. Liquid chromatograph/tandem mass spectrometer
 - 2.1.1.1. Ion source: negative ion atmospheric pressure chemical ionization, APCI⁻.
 - **2.1.1.2.** Column: HALO C18, 2.7-µm, 4.6-mm i.d. × 7.5-cm, or an equivalent product.
- **2.1.4.** Solid phase extraction vacuum manifolds.
- 2.1.5. Nitrogen evaporator.

2.2. Chemicals

Petroleum ether, HPLC grade;

Ethyl ether, HPLC grade;

Acetone, HPLC grade;

Methanol, HPLC grade;

Anhydrous ethanol, HPLC grade;

Ammonium acetate, GR grade;

Deionized water, resistivity \geq 18 MQ•cm (at 25°C);

Cu-pyropheophytin a, reference standard.

2.3. Apparatus

- 2.3.1. Centrifuge tube: 15-mL, PP.
- **2.3.2.** Membrane filter: 0.22-µm, Nylon.

- **2.3.3.** Solid phase extraction cartridge: Sep-Pak[®] silica, 1-g, 6-mL, or an equivalent product.
- 2.4. Reagents
- **2.4.1.** 1 M ammonium acetate solution

Dissolve 77 g of ammonium acetate in deionized water and dilute with deionized water to 1000 mL.

2.4.2. Mobile phase for HPLC

Solvent A: methanol: 1 M ammonium acetate (8:2, v/v).

Solvent B: acetone.

Solvent C: methanol.

Solvent D: deionized water.

2.4.3. Mobile phase for LC/HRMS²

Solvent A: acetone.

Solvent B: methanol.

2.4.4. Mobile phase for LC/MS/MS

Solvent A: methanol.

Solvent B: anhydrous ethanol.

2.5. Standard solution preparation

Transfer about 10 mg of Cu-pyropheophytin a reference standard accurately weighed into 10-mL volumetric flask, dissolve and dilute to volume with acetone as a stock solution. When to use, dilute the stock solution with acetone to $0.05 - 5.0 \mu g/mL$ as standard solutions.

2.6. Sample solution preparation

Transfer about 1 g of the sample accurately weighed into a centrifuge tube and transfer the sample from the tube into a Sep-Pak[®] silica cartridge by a plastic dropper. Wash the centrifuge tube with 3 mL of petroleum ether and transfer the washing solution into the cartridge. Repeat the washing step twice. Discard the eluents. Wash the cartridge with 9 mL of petroleum ether: ethyl ether (9:1, v/v) and discard the eluent. Add 6 mL of acetone to the cartridge, collect the eluent and evaporate to dryness by gently flushing with a stream of nitrogen at 25°C. Dissolve the residue with 1 mL of acetone, then filter the solution with a membrane filter, and use it as the sample solution.

2.7. Identification and quantification

Separately inject about 20 µL of the sample solution and the standard solutions into

the HPLC and perform HPLC analysis. Identify Cu-pyropheophytin a by retention times and absorption spectra. Calculate the amount of Cu-pyropheophytin a in the sample by the following formula:

The amount of Cu-pyropheophytin a in the sample (ppm) = $\frac{C \times V}{M}$

where

- C: the concentration of Cu-pyropheophytin a in the sample solution calculated by the standard curve (µg/mL)
- V: the make up volume of sample (mL)
- M: the weight of sample (g)

HPLC operating conditions:

Photodiode array detector: 430 nm.

Column: GL Sciences InertSustain C18, 2 µm, 2.1-mm i.d. × 10-cm.

Column temperature: 30 °C.

Mobile phase: gradient.

Time (min)	Solvent A (%)	Solvent B (%)	Solvent C (%)	Solvent D (%)
0.0 ightarrow 3.0	$30 \rightarrow 30$	$0 \rightarrow 0$	$0 \rightarrow 0$	$70 \rightarrow 70$
3.0 ightarrow 7.0	30 ightarrow 100	$0 \rightarrow 0$	$0 \rightarrow 0$	$70 \rightarrow 0$
7.0 ightarrow 9.0	$100 \rightarrow 100$	$0 \rightarrow 0$	$0 \rightarrow 0$	$0 \rightarrow 0$
9.0 ightarrow 11.0	$100 \rightarrow 50$	$0 \rightarrow 25$	$0 \rightarrow 25$	$0 \rightarrow 0$
11.0 ightarrow 13.0	$50 \rightarrow 50$	25 ightarrow 25	25 ightarrow 25	$0 \rightarrow 0$
$13.0 \rightarrow 15.0$	$50 \rightarrow 0$	25 ightarrow 50	25 ightarrow 50	$0 \rightarrow 0$
$15.0 \rightarrow 25.0$	$0 \rightarrow 0$	$50 \rightarrow 50$	$50 \rightarrow 50$	$0 \rightarrow 0$
$25.0 \rightarrow 26.0$	$0 \rightarrow 0$	50 ightarrow 70	$50 \rightarrow 30$	$0 \rightarrow 0$
$26.0 \rightarrow 35.0$	$0 \rightarrow 0$	70 ightarrow 90	$30 \rightarrow 10$	$0 \rightarrow 0$
35.0 ightarrow 35.1	$0 \rightarrow 30$	$90 \rightarrow 0$	$10 \rightarrow 0$	$0 \rightarrow 70$
35.1 ightarrow 40.0	30 ightarrow 30	$0 \rightarrow 0$	$0 \rightarrow 0$	$70 \rightarrow 70$

Injection volume: 20 µL.

Flow rate: 0.25 mL/min.

2.8. Confirmation

2.8.1. LC/HRMS²

Separately inject about 40 μ L of the HPLC positive sample solution and the standard solution into the LC/HRMS² and operate according to the following LC/HRMS² conditions. Identify Cu-pyropheophytin a based on retention times,

mass accuracy (< 5 ppm) and relative ion intensities.

LC/HRMS² operating conditions:

Column: HALO C18, 2.7-µm, 4.6-mm i.d. × 10-cm.

Column temperature: 30 °C.

Mobile phase: gradient.

Time (min)	Solvent A (%)	Solvent B (%)
0.0 → 10.0	$5 \rightarrow 80$	95 → 20
$10.0 \rightarrow 11.0$	$80 \rightarrow 100$	$20 \rightarrow 0$
$11.0 \rightarrow 14.0$	$100 \rightarrow 100$	$0 \rightarrow 0$
$14.0 \rightarrow 14.1$	$100 \rightarrow 5$	$0 \rightarrow 0$
14.1 → 21.0	$5 \rightarrow 95$	$95 \rightarrow 5$

Injection volume: 40 µL.

Flow rate: 1 mL/min.

Ion source: negative ion atmospheric pressure chemical ionization, APCI.

Collision energy: 20 eV.

Detection mode: product ion scan.

Resolution: 70000.

Analyte	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)
		522.1468
Cu-pyropheophytin a	873.4749	550.1799
		594.1697

2.8.2. LC/MS/MS

Separately inject about 40 μ L of the HPLC positive sample solution and the standard solution into the LC/MS/MS and operate according to the following LC/MS/MS conditions. Identify Cu-pyropheophytin a based on retention times and relative ion intensities.

LC/MS/MS operating conditions:

Column: HALO C18, 2.7-µm, 4.6-mm i.d. × 7.5-cm.

Column temperature: 30 °C.

Mobile phase: gradient.

Time (min)	Solvent A (%)	Solvent B (%)
0.0 → 1.0	100 → 70	$0 \rightarrow 30$
1.0 → 6.0	7 0 → 4 0	$30 \rightarrow 60$
6.0 → 14.0	40 → 0	60 → 100
14.0 → 15.5	$0 \rightarrow 0$	100 → 100
15.5 → 16.0	0 → 100	100 → 0

16.0 → 20.0	100 → 100	0 →	0
Injection volume: 40 μL.			
Flow rate: 1 mL/min.			
Ion source: negative ion atmospheric pressure chemical ionization, APCI ⁻ .			
Curtain gas: 20 psi.			
Collision gas: high.			
Gas 1: 55 psi.			
Gas 2: 0 psi.			
Temperature: 400 °C.			
Detection mode: multiple reaction monitoring (MRM).			
Analyte	Precursor ion (<i>m/z</i>) > Product ion (<i>m/z</i>)	Declustering potential (V)	Collision energy (eV)
	873.5 > 522	-68	-50

Notes:

Cu-pyropheophytin a

1. All the parameters can be adjusted depending on the instruments used if the above conditions are not applicable.

873.5 > 535

873.5 > 550

873.5 > 594

-68

-68

-68

-57

-50

-38

2. Maximum permitted tolerances for relative ion intensities by LC/HRMS² or LC/MS/MS are as follows:

Relative ion intensity (% of base peak)	Tolerance (%)
> 50	± 20
> 20~50	± 25
> 10~20	± 30
≤ 10	± 50

3. Further validation is necessary when interference compounds appear in samples.