(1044) 重量渗透濃度及容量渗透濃度

滲透壓在所有涉及溶質擴散或膜間液體移動相關之生物作用中,扮演重要角色。滲透作用為溶劑分子經半透膜,自低濃度移動至高濃度區域以達平衡,而非溶質分子移動。滲透壓知識對於從業人員判斷注射溶液為低張、等張或高張溶液非常重要,其定量測定有助於經由稀釋得到相對於全血為等滲透壓之溶液。

1. 渗透壓

溶液渗透壓取決於溶液內顆粒數量,因此被稱為具有依數性質。其中 顆粒可為分子、離子或於溶液中各自存在之聚合物(例如:二聚物)。 除溶液與溶質間有氫鍵鍵結或配位鍵結外,當溶質和溶液之間無交互 作用時,溶液表現出理想特性。對此含有非解離溶質之溶液,其滲透 壓(π)與重量莫耳濃度成正比。

$$\pi = (\rho RT/1000) \text{m},$$

其中ρ為溶劑於溫度 T (絕對溫度)之密度, R 為通用氣體常數, 而 m 為溶液重量莫耳濃度。對於含有不止一種溶質之實際溶液, 其滲透壓可由下列公式計算:

$$\pi = (\rho RT/1000) \sum v_i m_i \Phi_{m,i}$$

其中 ν_i 為第 i 個溶質分子解離後所得顆粒數目;非離子性(非解離性)溶質之 ν_i =1; m_i 為第 i 種溶質之重量莫耳濃度,而 $\Phi_{m,i}$ 為第 i 種溶質之重量莫耳滲透係數,係考量到溶液偏離於理想狀態。重量莫耳滲透係數之數值取決於溶液內溶質濃度、化學性質以及離子特性。經由測量於不同重量莫耳濃度凝固點之下降量,可得溶質重量莫耳滲透係數。於合理藥物濃度下,重量莫耳滲透係數小於 1,其數值會隨溶質濃度增加而下降 (表1)。

2. 重量渗透濃度

溶液重量渗透濃度ξ,,,可由下列計算而得:

$$\xi_m = \Sigma \nu_i m_i \Phi_{m,i}$$

真實溶液重量渗透濃度與非解離溶質理想溶液之重量莫耳濃度相關,為每kg溶劑所含溶質之渗透莫耳數或渗透毫莫耳數,分別以Osmol/kg或 mOsmol/kg表示。此單位與溶液重量莫耳濃度相似,因此重量渗透濃度乃真實溶液通過半透膜渗透壓之一種測量。如同渗透壓,溶液其他相關性質,如蒸氣壓降低、沸點升高以及凝固降低亦與溶液重量渗透濃度直接相關。溶液重量渗透濃度一般可藉由準確之測定凝固點下降變化 (ΔT_f) 而獲得:

$$\Delta T_f = k_f \xi_m$$

其中, k_f 為重量莫耳冰點下降常數,屬於一種溶劑特性。如水之 k_f 值為 1.860° /Osmol,這表示將 1 滲透莫耳數之溶質加入水 1 kg 中,凝固點會下降 1.860° 。

3. 容量渗透濃度

溶液容量滲透濃度為一種理論數值,以每L溶液所含溶質滲透莫耳數 (Osmol/L)表示。由於將滲透莫耳數作為容積函數展現,因此被廣 泛應用於臨床實務中。容量滲透濃度無法被測定,但可透過實驗測量 出重量滲透濃度數值後,依據理論計算而得。

有時容量滲透濃度 (ξ_c) 亦會依據理論,採用重量莫耳濃度計算:

$$\xi_c = \Sigma \nu_i c_i$$

其中 v_i 如前文定義、 c_i 為溶液中第 i 個溶質之莫耳濃度。例如將萬古徽素 1 g 溶於 0.9% 氯化鈉溶液 100 mL 中,其容量滲透濃度可計算如下:

[3×10 g/L/1449.25 (萬古黴素分子量) +2×9 g/L/58.44 (氯化鈉分子量)]×1000=329 mOsmol/L

由於血液重量滲透濃度範圍為每 kg 溶劑所含溶質 285~310 滲透毫莫 耳數,此結果顯示該溶液為輕微高張溶液。然而實際上該溶液為低張 溶液,且實驗測得之重量滲透濃度值為每 kg 溶劑所含溶質 255 滲透 毫莫耳數,此範例說明由溶液濃度依理論求得容量滲透濃度值應謹慎 解讀之,該數值不一定代表輸注液之滲透性質。

理論值(容量滲透濃度)與實驗值(重量滲透濃度)結果間存有差異,部分原因來自於滲透壓與重量滲透濃度有關,而非與容量滲透濃度相關。更重要之原因乃由於溶液中溶質分子間或溶質-溶劑分子間存在交互作用,造成真實溶液之滲透壓較理想溶液為低,導致實驗結果與依據理論計算之數值產生差異,此類交互作用降低溶質分子對半透膜所施加之壓力,導致重量滲透濃度實驗數值低於理論數值,而該差異與重量其耳滲透係數 $(\Phi_{m,i})$ 有關。此範例亦說明相較於計算理論數值,以實驗判定溶液重量滲透濃度更為重要。

4. 重量渗透濃度之測量

溶液重量渗透濃度常由測量溶液之凝固點下降值而得。

4.1. 裝置

測量凝固點下降之渗透壓計,包含下列部分:用於測量用途之容器 冷卻裝置;對溫度敏感之電阻器熱阻器,其中含有可隨溫度變化或 重量渗透濃度而逐漸變化之適當電流差或電位差量測裝置;及檢品 混合裝置。

測量溶液蒸氣壓之渗透壓計較不常使用,測定時所需樣本較少(一

般約 5 μL),但其重量渗透濃度測定值之準確度和精密度,與利用 觀察溶液凝固點之渗透壓計所取得數值結果相當。

4.2. 標準品溶液

需要時,依據表1所述製備標準品溶液。可使用市售校正滲透壓計校正溶液,該溶液之重量滲透濃度等於或不同於表1所列,且經NIST可追蹤之方法標準化。

表 1、渗透壓計校正用標準品溶液

標準品溶液	重量渗透濃度	重量莫耳滲透	凝固點降低量
(每kg水中所	(mOsmol/kg)	係數	(°)
含氯化鈉 g 數)	(ξ_m)	$(\Phi_m, _{\mathrm{NaCl}})$	$_{\Delta}T_{f}$
3.087	100	0.9463	0.186
6.260	200	0.9337	0.372
9.463	300	0.9264	0.558
12.684	400	0.9215	0.744
15.916	500	0.9180	0.930
19.147	600	0.9157	1.116
22.380	700	0.9140	1.302

引用自《歐洲藥典》第四版 2002, p. 50。

4.3. 檢品溶液

若為注射用固體,依仿單指示使用適當稀釋劑混合,若為溶液則直接使用。(註:若有必要可將溶液稀釋至滲透壓計之測量範圍,除正文另有規定外,試驗結果應以稀釋後溶液之數值呈現,不得將該數值乘以稀釋倍數以推算原溶液重量滲透濃度。重量莫耳滲透係數為一濃度函數,因此會隨稀釋過程改變。)

4.4. 測定法

首先依據製造商指示校正儀器。以至少一種表一所列溶液確認儀器校正狀況,即標準品溶液之重量滲透濃度值與測試溶液預期值,差距為每kg溶劑所含溶質50滲透毫莫耳數內,或位於檢品溶液重量滲透濃度預期中間值範圍內,儀器讀數應與標準品溶液差距在每kg溶劑所含溶質±4滲透毫莫耳數範圍內。依據製造商指示,將每一適當體積之標準品溶液放入測量槽位內,並啟動冷卻系統。混合裝置通常會設定比預期下降凝固點更低之溫度,達平衡時儀器會通知。必要時可適當調整裝置以校正滲透壓計,使其讀數與表一所列標準品重量滲透濃度或凝固點下降值一致。(註:若儀器顯示讀數為凝固點下降值,則可利用「重量滲透濃度」一節之公式換算重量滲透濃度。)以各種檢品溶液反複測定,直接請取檢品溶液重量滲透濃度。)以各種檢品溶液反複測定,直接請取檢品溶液重量滲透濃度。)以各種檢品溶液反複測定,直接請取檢品溶液重量滲透濃度。

或依凝固點下降值計算。

無論濃度以重量莫耳濃度或容量莫耳濃度表示,假設其滲透係數值基本相同時,藉由溶液重量莫耳濃度可轉換為容積莫耳濃度,可將實驗測得溶液重量滲透濃度轉換為容積滲透濃度。除濃度很高之溶液外,溶液之容積滲透濃度(ξ_c)可利用實驗測定之重量滲透濃度(ξ_m)計算而得。

$$\xi_c = 1000 \xi_m/(1000/\rho + \Sigma w_i v_i)$$

其中 w_i為重量,單位為 g;而 v_i為第 i 種溶質之部分比容,單位為 mL/g。溶質部分比容係指在溶液中添加 1 g 溶質溶解後,溶液體積之變化量,該比容可藉由測量添加溶質前後溶液密度得知。鹽類部分比容通常極低,約為 0.1 mL/g,其他溶質數值則較高,例如:胺基酸部分比容約為 0.6~0.9 mL/g。由上述探討容量滲透濃度與重量渗透濃度關係之公式可得知:

$$\xi_c = \xi_m(\rho - c)$$

其中ρ為溶液密度; c 為溶質總濃度, 兩者單位均以 g/mL 表示。或者容量滲透濃度亦可藉由實驗所得重量滲透濃度(即以適當方法測得溶液之密度以及溶解於每 mL 溶液內經校正含水量之溶質總重)計算得知。