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ABSTRACT

Simultaneous determination of binary mixtures of benazepril and hydrochlorothiazide in pharmaceutical tablets using U V-visible 
spectrophotometry, classical least squares (CLS) and three genetic algorithms (GA) based multivariate calibration methods was demon-
strated.  The three genetic multivariate calibration methods are Genetic Classical Least Squares (GCLS), Genetic Inverse Least Squares 
(GILS) and Genetic Regression (GR).   The sample data set contains the U V- spectra of 28 synthetic mixtures of benazepril (12~36 
µg/mL) and hydrochlorothiazide (10~22 µg/mL) and 16 tablets containing both compounds.  The spectra cover the range from 210 to 
360 nm in 0.1 nm intervals.  Several calibration models were built with the four methods.  The root mean square error of calibration 
(RMSEC) and validation (RMSEV) for the synthetic data were in the range of 0.19 and 0.34 µg/mL for all the genetic algorithm based 
methods.  The root mean square error of Prediction (RMSEP) values for the tablets were in the range of 0.04~0.20 mg/tablets.  A com-
parison of genetic algorithm selected wavelengths for each component was also included.  
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INTRODUCTION

Benazepril hydrochloride has been known as an 
angiotensin converting enzyme inhibitor that is used in the 
treatment of essential hypertension.  Hydrochlorothiazide 
has been a widely used thiazide diuretic.  The binary 
mixture of the two drugs is used in the treatment of 
hypertension.  The resolution of the mixture systems 
containing two or more compounds without any separation 
procedure in the presence of excipients in samples is 
one of the main issues of the simultaneous quantitative 
determination.  The simultaneous quantitative determination 
of both drugs in pharmaceutical tablets using various 
methods including spectrophotometry(1-5), HPLC(6,7), 
potentiometric(8), and capillary electrophoresis(9) have been 
described for several mixtures.

Modern spectroscopic instruments are so fast that 
they can produce hundreds of spectra in a few minutes 
for a given sample that contains multiple components. 
Unfortunately, univariate calibration methods are not 
suitable for this type of data, as they require an interference-
free system.   Multivariate calibration deals with data 
containing instrument responses measured on multiple 
wavelengths for a sample that usually contains more than 
one component.  In recent years, advances in chemometrics 
and computers have lead to the development of several 

multivariate calibration methods(10-13) for the analysis of 
complex chemical mixtures.

Genetic regression (GR) is a calibration technique that 
optimizes linear regression models using a genetic algorithm 
(GA) and has been applied to a number of multi-instrument 
calibration and wavelength selection problems(14-17).  GAs 
are non-local search and optimization methods that are 
based upon the principles of natural selection(18,19).  For 
a given full spectrum data, GR selects an optimum linear 
combination of wavelengths and simple mathematical 
operators to build a linear calibration model using simple 
least squares method.

Classical Least Squares (CLS) extends the classical 
Beer’s Law model in which the absorbance at each 
wavelength is directly proportional to the component 
concentrations.   Inverse Least Squares (ILS) is based on 
the inverse Beer’s Law where concentrations of an analyte 
are modelled as a function of absorbance measurements.  
Genetic C lassical Least Squares (GCLS) and Genetic 
Inverse Least Squares (GILS) are modified versions of 
original CLS and ILS methods in which a small set of 
wavelengths are selected from a full spectral data matrix and 
evolved to an optimum solution using a genetic algorithm.

In this work, C LS and three different genetic 
algorithms based calibration methods GCLS, GILS and GR 
were tested with the aim of establishing calibration models 
that have a high predictive capacity for the simultaneous 
determination of benazepril and hydrochlorothiazide in their 
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binary mixtures and in pharmaceutical tablet preparations 
using the UV-visible spectrophotometry. 

I. Genetic Regression

Genetic Algorithms (GA) are global search and 
optimization methods based upon the principles of natural 
evolution and selection as developed by Darwin(20). 
Computationally, the implementation of a typical GA is 
quite simple and consists of five basic steps including 
initialization of a gene population, evaluation of the 
population, selection of the parent genes for breeding and 
mating, crossover and mutation, and replacing parents with 
their offspring.  These steps have taken their names from 
the biological foundation of the algorithm.

Genetic Regression (GR) is an implementation of a 
GA for selecting wavelengths and mathematical operators 
to build linear calibration models.   GR is a hybrid 
calibration between univariate and multivariate calibration 
techniques in which it optimizes simple linear regression 
models through an evolving selection of wavelengths and 
simple mathematical operators (+, –, ×, /). GR follows 
the same basic initialize/breed/mutate/evaluate algorithm 
as other GAs but differs in the way it encodes genes.  A 
gene is a potential solution to a given problem and the 
exact form may vary from application to application. 
Here, the term gene is used to describe the collection 
of instrument response pairs combined with the above 
mentioned operators.  These pairs, called “base pairs”, 
are then combined with an addition operator to produce a 
score, which relates the instrument response to component 
concentration.  The term “population” is used to describe 
the collection of individual genes in the current generation. 

In the initialization step, first generation of genes is 
created randomly with a fixed population size.  Although 
random initialization helps to minimize bias and maximize 
the number of possible recombinations, GR is designed to 
select initial genes in a somewhat biased random fashion 
in order to start with genes better suited to the problem 
than those that would be randomly selected.  Biasing is 
done with a correlation coefficient by plotting the scores 
of initial genes against the component concentrations.  The 
size of the gene pool is a user defined even number in 
order to allow breeding of each gene in the population.  It 
is important to note that the larger the population size, the 
longer the computation time.  The number of base pairs 
in a gene is determined randomly between a fixed low 
limit and high limit.  The lower limit was set to 2 to allow 
single point crossover whereas the higher limit was set to 
eliminate overfitting problems and reduce the computation 
time.   Once the initial gene population is created, the 
next step is to evaluate and rank the genes using a fitness 
function, which is the inverse of the root mean square error 
of calibration (RMSEC). 

The third step is where the basic principle of natural 
evolution is put to work for GR.  This step involves the 
selection of the parent genes from the current population 

for breeding using a roulette wheel selection method 
according to their fitness values.  The goal is to give a 
higher chance to those genes with high fitness so that only 
the best performing members of the population will survive 
in the long run and will be able to pass their information to 
the next generations.  Because of the random nature of the 
roulette wheel selection method, however, genes with low 
fitness values will also have some chance to be selected. 
Also, there will be genes that are selected multiple times 
and some genes will not be selected at all and will be 
thrown out of the gene pool.  After the selection procedure 
is completed, the selected genes are allowed to mate top-
down without ranking whereby the first gene mates with the 
second gene and the third one with the fourth one and so on 
as illustrated in the following example:
parents

S1 = (A347 × A251)#+ (A379 + A218)	 (1)
S2 = �(A225 × A478)#+ (A343 / A250) + 	

(A451 – A358) + (A231 – A458)	 (2)
The points where the genes are cut for mating are 

indicated by #.
offspring

S3 = �(A347 × A251) + (A343 / A250) + 	
(A451 – A358) + (A231 – A458)	 (3)

S4 = (A225 × A478) + (A379 + A218)	 (4)
Here A347 corresponds to the raw absorbance at 

347 nm wavelength.  The first part of the S1 is combined 
with the second part of the S2 to give the S3, likewise 
the second part of the S1 combined with the first part of 
the S2 to give S4.  This process is called the single point 
crossover and is the one used in GR.  The single point 
crossover will not provide different offspring if both parent 
genes are identical, which may happen in the roulette 
wheel selection, and broken at the same point.  Also note 
that mating can increase or decrease the number of base 
pairs in the offspring genes.  After crossover, the parent 
genes are replaced by their offspring and the offspring are 
evaluated.  The ranking process is based on their fitness 
values following the evaluation step.  Then the selection for 
breeding/mating starts all over again.  This is repeated until 
a predefined number of iterations are reached. 

Mutation which introduces random deviations into 
the population was also introduced into the GR during the 
mating step at a rate of 1% as is typical in GAs.  This is 
usually done by replacing one of the base pairs in an existing 
gene with a randomly generated new base pair. Mutation 
allows the GR to explore the search space and incorporate 
new material into the genetic population.  It helps to keep 
the search moving and can eject GR from a local minimum 
on the response surface.  However, it is important not to set 
the mutation rate too high since it may keep the GA from 
being able to exploit the existing population.

Because the GR method is ended with a number of 
iteration, it is likely that a highly over fitted model may 
result. To avoid this problem cross validation approach is 
used during the initial gene selection and iteration cycles. 
Cross validation is done in way that each sample in the 
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calibration set is left outside once and the model is built 
with m-1 number of samples and this model is used to 
predict the left over sample.  The predicted error of sum of 
squares (PRESS) is calculated.  Then, the RMSEC value 
is determined after calculating all PRESS values for the 
samples in the calibration set.  In the end, the gene with the 
lowest RMSEC (highest fitness) is selected for the model 
building which is done by simple least squares.  This model 
is used to predict the concentrations of component being 
analyzed in the validation sets.  The success of the model 
in the prediction of the validation sets are evaluated using 
root mean square error of validation (RMSEV).  Because 
the random processes are heavily involved in the GR as in 
all the GAs, the program has been set to run several times 
for each component in a given multi-component mixture 
during the course of this study.  The best run, (i.e. the one 
generating the lowest RMSEC for the calibration set and at 
the same time producing RMSEV’s for validation sets that 
are in the same range with the RMSEC) was subsequently 
selected for evaluation and further analysis.    The 
termination of the algorithm can be done in many ways.  
The easiest way is to set a predefined iteration number for 
the number of breeding/mating cycles. 

GR has some major advantages over classical 
univariate and multivariate calibration methods.   It is 
a hybrid calibration method that uses the full spectral 
information and reduces it to a single score upon which 
simple calibration models are built.  First of all, it is as 
simple as univariate calibration in terms of the mathematics 
involved in the model building and prediction steps, but 
at the same time it has the advantages of the multivariate 
calibration methods since it uses the full spectrum to 
extract genetic scores.   It automatically corrects baseline 
fluctuations using simple mathematical operators while 
forming the base pairs. Also note that no data pretreatment 
is necessary before calibration, which saves the extra time 
in the data processing. 

II. Genetic Classical Least Squares

The classical least squares (CLS) method extends the 
classical Beer’s Law model in which the absorbance at 
each wavelength is directly proportional to the component 
concentrations.  Model errors are assumed to be in the 
measurement of the instrument responses as it was in the 
classical univariate method.   In matrix notation, the CLS 
model for m calibration samples containing l chemical 
components whose spectra contain n wavelengths is 
described as:

A = CK –EA	 (5) 

where A is the m × n matrix of the calibration spectra, C 
is the m × l matrix of the component concentrations, K is 
the l × n matrix of absorptivity-pathlength constants and 
EA is the m × n matrix of the spectral errors or residuals 
not fit by the model.  Here the K matrix represents the 

first order estimates of the pure component spectra at unit 
concentration and unit pathlength.  The method of least-
squares can be used to estimate the K matrix.  The least-
squares estimate of the K is defined as:

^K  = (C'C)-1 C'A	 (6) 

O n c e  t h e  e s t i m a t e d  ^K m a t r i x  o b t a i n e d ,  t h e 
concentrations of an unknown sample can be predicted from 
its spectrum by:

ĉ = ( ^K ^K ')-1 ^K a	 (7) 

where a is the spectrum of the unknown sample and ĉ is the 
vector of the predicted component concentrations.  Genetic 
Classical Least Squares (GCLS) is a modified version of the 
original CLS method in which a small set of wavelengths 
are selected from a full spectral data using a genetic 
algorithm.  The algorithm used to select the optimum 
number of wavelengths in GCLS is quite similar to the GR 
algorithm, but differs in the way it encodes the gene.   In 
GCLS, the term “gene” describes a vector whose elements 
are randomly selected wavelengths.  The size of the vector 
is also determined in a random fashion with an upper limit 
to reduce computation time. 

In the initialization step, an even number of genes 
are formed from full a spectral data matrix and each gene 
is used to form a C LS model.  These models are then 
evaluated and ranked using the fitness function described in 
GR.  The roulette wheel method is then used to select the 
gene population for breeding.  After the selection procedure 
is completed, the selected genes are allowed to mate top-
down without ranking whereby the first gene mates with the 
second gene and the third one with the fourth one and so 
on as described above with one difference.  Since the genes 
used in GCLS are only vector of wavelengths and contain 
no base pairs as described in GR, for each gene a random 
number is generated between 1 and the length of the gene 
and the single point crossover process is performed using 
this number.  After crossover, the parent genes are replaced 
by their offspring and the offspring are evaluated.  The 
ranking process is based on their fitness values and follows 
the evaluation step.  Then the selection for breeding/mating 
starts all over again.  This is repeated until a predefined 
number of iterations are reached.   In each iteration, the 
best gene with the lowest RMSEC  is stored in order to 
compare it with the best gene of the next generation.  If the 
next generation produces a better gene then it is replaces 
the older one; otherwise the older one is kept for further 
iterations.  At the end, the gene with the lowest RMSEC is 
selected for model building.  This model is used to predict 
the concentrations of component being analyzed in the 
validation sets as described in GR. 

III. Genetic Inverse Least Squares

The major drawback of the C LS is that all of the 
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interfering species must be known and their concentrations 
are included in the model.  This need can be eliminated 
by using the inverse least squares (ILS) method which 
uses the inverse of Beer’s Law.   In the ILS method, 
concentrations of an analyte are modelled as a function of 
absorbance measurements.  Because modern spectroscopic 
instruments are very stable and provide excellent signal-to-
noise (S/N) ratios, it is believed that the majority of errors 
lie in the reference values of the calibration samples, not 
in the measurement of their spectra.  The ILS model for m 
calibration samples with n wavelengths for each spectrum 
is described by:

C = AP – EC	 (8) 

where C and A are the same as in CLS, P is the n × l matrix 
of the unknown calibration coefficients relating l component 
concentrations to the spectral intensities and EC is the m × 
l matrix of errors in the concentrations not fit by the model. 
In the calibration step, ILS minimizes the squared sum of 
the residuals in the concentrations.  The biggest advantage 
of ILS is that equation 8 can be reduced for the analysis of 
single component at a time since analysis is based on an ILS 
model is invariant with respect to the number of chemical 
components included in the analysis. The reduced model is 
given as:

c = Ap – ec	 (9) 

where c is the m × 1 vector of concentrations for the analyte 
that is being analyzed, p is n × 1 vector of calibration 
coefficients and ec is the m × 1 vector of concentration 
residuals not fit by the model. During the calibration step, 
the least-squares estimate of p is:

p̂  = (A'A)-1 A' � c	 (10) 

where p̂ is the estimated calibration coefficients.  Once p̂ is 
calculated, the concentration of the analyte of interest can be 
predicted with the equation below.

ĉ = a ' � p̂	 (11) 

where ĉ is the scalar estimated concentration and a is the 
spectrum of the unknown sample.  The ability to predict one 
component at a time without knowing the concentrations of 
interfering species has made ILS one of the most frequently 
used calibration methods.   However, the identity of 
interfering species still needs to be known to prepare a good 
calibration sample set. 

The major disadvantage of ILS can be seen in 
equation (10) where the matrix, which must be inverted, 
has dimensions equal to the number of wavelengths in the 
spectrum and this number should not exceed the number 
of calibration samples.  This is a big restriction since 
the number of wavelengths in a spectrum will generally 
be more than the number of calibration samples and the 

selection of wavelengths that provide the best fit for the 
model is not a trivial process.  Several wavelength selection 
strategies, such as stepwise wavelength selection and all 
possible combination searches, are available to build an 
ILS model that fits the data best.  Here we used the same 
genetic algorithm described in GCLS to build genetic 
inverse least squares (GILS) models with one difference. 
This difference is in the way the mating and single point 
crossover operations are carried out.  Because the number 
of wavelengths is restricted in response matrix A in the ILS, 
the size of the largest gene is restricted to one less than the 
number of calibration samples in the concentration vector. 
However, if the single point crossover is set to take place 
in any point of a gene, then the mating step could produce 
new genes that have a larger number of wavelengths than 
the number of calibration samples even though all the genes 
in the initial gene pool were set to have smaller number of 
wavelengths than the size of the concentration vector.   In 
order to avoid this problem, the crossover operation is only 
performed somewhere around the middle of each gene in 
GILS so that the new generations will not have larger sizes 
than the number of calibration samples.  The rest of the 
algorithm is the same as the one used in GCLS. 

MATERIALS AND METHODS

I. Materials

In this work, two commercial  pharmaceutical 
formulations, Cibadrex and Divitab – 5/6.25 (I) and 10/12.5 
(II) tablets (produced by Novartis Pharm., Turkey, Batch 
No.   13 and 18, respectively) containing 5 and 10 mg 
of benazepril hydrochloride (BE) and 6.25 and 12.5 mg 
of hydrochlorothiazide (HCT) were investigated.  Stock 
solutions of 100 mg/100 mL HCT and BE were prepared in 
0.1 M NaOH.  The standard solutions in 25-mL volumetric 
flasks containing 0~22 mg/mL HCT and 0~36 mg/mL BE 
were obtained from their stock solutions by appropriate 
dilution.  The concentration profiles of calibration and 
validation samples were designed in a way that minimizes 
colinearity problem since a binary system has been studied. 
For the commercial vitamin, 16 tablets were accurately 
weighed and powdered in a mortar.  An amount equivalent 
to one tablet was dissolved in 0.1 M NaOH in a 100-mL 
calibrated flask by sonication.  The solution was filtered 
into a 100-mL calibrated flask through Whatman No. 42 
filter paper and diluted to appropriate volume with the same 
solvent.

II. Methods

Sample spectra were measured in a Shimadzu 
UV-1600 double beam U V-visible spectrophotometer 
from 210 to 360 nm with 0.1 nm intervals.  Quartz cells 
with 1 cm pathlengths were used.  The CLS and the three 
new genetic algorithms based multivariate calibration 
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methods (GCLS, GILS and GR) were written in MATLAB 
programming language using Matlab 5.3 (MathWorks 
Inc, Natick, MA, USA).  The text files for calibration, 
validation and prediction sets were generated with the use 
of Microsoft Excel (MS office 97, Microsoft Corporation, 
CA, USA).

RESULTS AND DISCUSSION

To generate the calibration models, a total of 20 
samples were selected to be included in the calibration set 
and 8 samples were used to construct the validation set as 
shown in Table 1.   In addition, two different commercial 
tablets (each consists of 8 samples) were used to build 
prediction set.  The first contains 5 mg benazepril per 
tablet and 6.25 mg hydrochlorothiazide per tablet.  The 
second contains 10 mg benazepril per tablet and 12.5 mg 
hydrochlorothiazide per tablet.  After dissolving, the tablet 
samples were diluted to have 16 µg/mL of benazepril and 
20 µg/mL of hydrochlorothiazide.

UV spectra of pure benazepril (36 µg/mL) and 
hydrochlorothiazide (22 µg/mL) along with the binary 
mixture of the two components between 210 and 360 nm 
wavelength range are shown in Figure 1.  As seen from the 
figure, benazepril gives a broad peak with the maximum 
around 242 nm and hydrochlorothiazide has a maximum 

absorbance around 271 nm.  Their mixture spectrum, 
however, indicates some overlap over the entire region 
which indicates that the use of multivariate methods would 
be needed to resolve these components.  Throughout the 
genetic multivariate calibration process, it is expected that 
these overlaps will be resolved and reveal the information 
necessary to build successful calibration models otherwise 
almost impossible with univariate calibration methods. 

Several calibration models were generated with the 
four methods and Table 2 shows the results of binary 
mixtures for calibration and validation sets.  Here, the CLS 
method was applied to the whole spectrum data set and in 

210 235 260 285 310 335 360

Wavelength (nm)

A
bs

or
ba

nc
e

Mixture

Hydrochlorothiazide

Benazepril

0.0

0.5

1.0

1.5

2.0

2.5

Figure 1.  U V spectra of benazepril (36 µg/mL) and 
hydrochlorothiazide (22 µg/mL) along with a binary mixture of the 
two components between 220 and 360 nm wavelength range.

Table 1. Concentration profiles of benazepril (BE) and hydrochlorothiazide (HCT) binary mixtures in the calibration, the validation and the pre-
diction (actual tablets) sets

Sample number
Calibration (µg/mL) Validation (µg/mL) Prediction (µg/mL)

BE HCT BE HCT BE HCT

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

12
20
24
28
36
12
16
28
32
36
0
0
0
0
0

16
16
16
16
16

0
0
0
0
0

20
20
20
20
20
10
14
16
20
22
10
12
18
20
22

16
32
20
24
0
0

16
16

0
0

20
20
12
18
14
16

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
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Table 2. Results of the mixtures in the calibration and the validation sets containing benazepril and hydrochlorothiazide obtained from the four 
multivariate calibration methods (CLS, GCLS, GILS and GR)

Parameters
Methods

CLS GCLS GILS GR

Benazepril
   Calibration
      RMSECa (µg/mL)
      Average recovery (%)
      RSDb

   Validation
      RMSEVc (µg/mL)
      Average recovery (%)
      RSD 
Hyrochlorothiazide
   Calibration
      RMSEC (µg/mL)
      Average recovery (%)
      RSD 
   Validation
      RMSEV (µg/mL)
      Average recovery (%)
      RSD 

  0.48
99.91
  3.49

  0.38
99.60
  2.60

  0.63
99.04
  5.38

  0.65
98.49
  5.30

   0.33
100.22
   2.63

   0.34
  99.43
   1.96

   0.29
  99.62
   2.11

   0.26
  98.70
   1.21

   0.19
  99.89
   1.33

   0.35
100.44
   1.91

   0.24
  99.89
   1.36

   0.18
  99.18
   0.99

  0.34
99.98
  2.48

  0.43
99.19
  3.03

  0.31
99.74
  1.91

  0.23
98.84
  1.15

aRoot mean square error of calibration.
bRelative standard deviation.
cRoot mean square error of validation.

Table 3. Results of commercial tablets (I) containing benazepril HCl (5 mg/tablet) and hydrochlorothiazide (6.25 mg/tablet) obtained from the 
four multivariate calibration methods (CLS, GCLS, GILS and GR) 

Predicted (mg/tablet)

Component Benazepril HCl Hydrochlorothiazide

Method
Mean
SDa

RSDb

RMSEPc

CLS
5.47
0.04
0.81
0.48

GCLS
4.90
0.07
1.37
0.12

GILS
5.00
0.09
1.82
0.09

GR
4.89
0.07
1.50
0.13

CLS
6.87
0.05
0.76
0.62

GCLS
6.26
0.06
0.89
0.05

GILS
6.21
0.05
0.74
0.06

GR
6.31
0.06
0.92
0.08

aStandard deviation.
bRelative standard deviation.
cRoot mean square error of prediction.

Table 4. Results of commercial tablets (II) containing benazepril HCl (10 mg/tablet) and hydrochlorothiazide (12.5 mg/tablet) obtained from the 
four multivariate calibration methods (CLS, GCLS, GILS and GR)

Predicted (mg/tablet)

Component Benazepril HCl Hydrochlorothiazide

Method
Mean
SDa

RSDb

RMSEPc

CLS
10.50
  0.01
  0.08
  0.50

GCLS
10.05
  0.02
  0.24
  0.05

GILS
9.80
0.04
0.43
0.20

GR
9.93
0.04
0.38
0.08

CLS
14.02
  0.03
  0.20
  1.52

GCLS
12.54
   0.02
  0.18
  0.05

GILS
12.52
  0.03
  0.27
  0.04

GR
12.64
  0.02
  0.15
  0.14

aStandard deviation.
bRelative standard deviation.
cRoot mean square error of prediction.
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the case of genetic algorithm based methods (GCLS, GILS 
and GR) the algorithms were set to run 30 times with 20 
genes and 100 iterations in each run.  The results given 
in table for GCLS, GILS and GR are from the runs that 
generate the lowest RMSEC and RMSEV combination. 
Then these models were used later to predict the actual 
tablet samples and compared with each other based on their 
success of predicting actual samples as shown in Tables 3 
and 4.

A close examination of the results given in Table 2 

indicates that all four methods generate approximately 
the same results for benazepril whereas genetic algorithm 
based methods produces somewhat better results than 
CLS for hydrochlorothiazide in the synthetic mixtures. 
However, this could be very misleading conclusion if one 
considers the results given in Tables 3 and 4 where the 
results of actual tablets are shown for the first and second 
type tablets, respectively.  The RMSEP values generated 
with conventional CLS methods are much larger than the 
ones generated by genetic algorithm based methods.  On 

Figure 2. Plots of the actual vs. the predicted benazepril concentrations for the calibration and the validation sets obtained from the four multi-
variate calibration methods: (A) CLS, (B) GCLS, (C) GILS and (D) GR method.
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the other hand, the three genetic multivariate methods 
were generated very similar results where GILS seems to 
have slightly better than the other two but the differences 
does not indicate a significant difference.  It is evident that 
the hard modelling method CLS is unable to predict the 
composition of actual tablets as good as the genetically 
modified multivariate methods.   In addition, the mean 
tablet results obtained with CLS were significantly different 
from actual values which might be the indication of overfit 
for the model.   In terms of the overall performance of the 
four methods it can be said that the genetically modified 

methods improves the prediction ability of models for 
actual tablet samples.

Figures 2 and 3 show the plot of actual vs. predicted 
benazepril and hydrochlorothiazide concentrations, 
respectively for the calibration and validation sets obtained 
with the four methods in the second experiment.  The R 
square (R2) values of regression were ranged between 
0.9950 and 09998 indicating very good fit between actual 
and predicted concentrations for the synthetic samples.   

In order to determine whether the genetic algorithm 
selected wavelengths correspond to the particular 
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Figure 3. Plots of the actual vs. the predicted hydrochlorothiazide (HCT) concentrations for the calibration and the validation sets obtained from 
the four multivariate calibration methods: (A) CLS, (B) GCLS, (C) GILS and (D) GR method. 
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component absorbance region, frequency of the selected 
wavelengths in the 30 runs for each genetic algorithm 
based method were plotted against wavelength range 
along with a mixture spectrum in Figures 4~6 for each 
component.  As seen from the figures, the frequency of 
the selected wavelengths is significantly higher around 
the peak maximum of each component.   This shows 
that the genetic multivariate calibration methods select 
the wavelengths that correspond to the each component 
absorption range even though the algorithm starts with the 
whole spectrum information at the beginning of each run 
and each wavelength has equal chance of being selected.  
The explanation is in the evolutionary nature of genetic 
algorithm where the wavelengths suited for the particular 
component survives in the long run of iterations and other 
do not.  This gives an advantage to the genetic algorithm 
based methods where only the information related to the 
particular component are used to construct the model 
thereby reducing the noise in the overall information.

For example, there are three regions of high selection 
frequency for benazepril in Figure 4A.  One of the regions 
corresponds to the main absorbance peak of benazepril 

as shown in Figure 1 and the other two correspond to 
the baseline area.  This trend is also observed in the 
corresponding Figures 5A and 6A.  On the other hand, 
frequency distribution of hydrochlorothiazide seems 
to spread more over the entire wavelength region.  The 
possible explanation could be the strong dominance of 
hydrochlorothiazide spectrum over benazepril. 

CONCLUSIONS

This study illustrates the application of the hard 
modelling technique C LS and three genetic algorithm 
based multivariate calibration methods to simultaneous 
determination of pharmaceuticals in synthetic and actual 
tablet formulations.  It can be said that all genetic algorithm 
based methods generate acceptable results in the given 
concentration range of the components.  These methods 
coupled with spectrophotometry could be an alternative 
to other methods such as chromatography, which is more 
expensive and time-consuming.
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Figure 4. Distribution of the selected wavelengths by genetic algorithm in GCLS method for a total of 50 runs with 20 genes and 100 iterations 
along with a spectrum of binary mixture: (A) benazepril and (B) hydrochlorothiazide.
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Figure 6. Distribution of the selected wavelengths by genetic algorithm in GR method for a total of 50 runs with 20 genes and 100 iterations 
along with a spectrum of binary mixture: (A) benazepril and (B) hydrochlorothiazide.




