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ABSTRACT

A robust identification model for herbal medicine was developed by combining near-infrared spectroscopy (NIR) and artifi-
cial neural network (ANN) to discriminate raw materials of herbal medicine, which are often similar in appearance and practically 
impossible to identify by visual inspection alone. The identification by chemical methods is usually higher in cost and lower in 
efficiency. Compared with other modern inspection methods, NIR is an alternative, which is non-destructive, rapid, and easy to 
operate. In this study, we employed ANN to analyze the absorption spectra of herbal medicines and successfully built an identifica-
tion model, which is able to identify 30 different herbal medicines. The best identification model can reach a correct identification 
rate (CIR) of 99.67% when applied to a training set of 600 samples, and 100% CIR when applied to a test set of 300 samples.
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INTRODUCTION

Identification of herbal medicines plays an important 
role in their processing and usage. Lots of plants can be 
used as raw materials for herbal medicines, but some of 
them, even not related species(1), are similar in appear-
ance, and their storage as powder for transportation 
makes their appearance a useless indicator for identifica-
tion. The promotion of herbal medicines in recent years, 
has made it necessary and urgent to analyze them by 
qualitative and quantitative inspection methods.

Common inspection methods of herbal medicines 
can be roughly divided into sensory and analytical inspec-
tion. The former includes the morphological inspection 
and histological technique. Although the morpholog-
ical inspection is direct and simple, its accuracy heavily 
depends on the inspectors, who are somewhat subjec-
tive. The histological analysis can reveal the character-
istics of the structure and the arrangement of tissue and 
cells, but it is not capable of identifying related species, 
which may share similar histological characteristics. 

Analytical inspection methods include thin layer chro-
matography (TLC)(2), gas chromatography (GC), high 
performance liquid chromatography (HPLC)(3), capillary 
electrophoresis (CE)(4), etc. These methods are accurate 
for chemical constituents analysis, but the complicated 
sample preparation procedures and long inspection time 
make them impossible for online inspection. Besides, they 
are destructive methods, thus inevitably damaging and 
consuming samples.

Near infrared (NIR) spectroscopy is also an analyt-
ical inspection method, but its advantages, such as non-
destructive inspection, rapid measurement, simple opera-
tion, and less or no sample preparation, make it an ideal 
alternative for the aforementioned methods. It has been 
extensively adopted by bio-related industries such as 
agriculture(5), pharmacy(6), etc., and there were some 
applications for herbal medicines as well. Most of them 
were focused on identifying related species(7), but those 
applications only dealt with a small number of medi-
cines(1). There was some success using artificial neural 
network (ANN) to analyze NIR spectra for the identifi-
cation of bio-materials, for example, the classification of 
damaged soybean seeds(8), discrimination of varieties of 
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green tea(9), and the discrimination of Chinese bayberry 
varieties(10). In this study, the spectra of 900 samples 
from 30 different medicines was measured on a NIR 
spectrometer, and then pre-processed by the standard 
normal variate (SNV) transformation before the spectra 
analysis. Two thirds of the spectra were selected, by 
the Kennard & Stone (KS) algorithm, as the training 
set and the remaining third was utilized as the test set. 
The spectra of the training set were compressed by prin-
cipal component analysis (PCA), and then sent into the 
networks to start training and to reach the best identifica-
tion model. Finally, the test set was used to validate the 
performance of the identification models.

The purpose of this study was to provide herbal 
medicine practitioners and researchers with a reliable 
identification method, which takes advantage of the non–
destructive and rapid NIR spectroscopy inspection and 
ANN’s high level of predictability to improve the effi-
ciency of herbal medicines identification.

MATERIALS AND METHODS

I. Materials and Apparatus

A total of 900 samples from 30 different herbal 
medicine powders were provided by Sun Ten Pharmaceu-
tical Co., Ltd. Each medicine had 30 different samples, 
which were loaded in 20 mL vials. For the purpose of 
analysis, the data sets were designed as follows: set 
A, set B, set C, set D, and set E. The first four data sets 
contained no samples that were the same, and the medi-
cines in each set were randomly selected. 

(I) Set A contained 150 samples of 5 medicines: Citrus 
Undeveloped Exocarpium, Amomi Semen, Curcumae 
Radix, Achyranthis Radix, and Cyperus rotundus. 

(II) Set B contained 150 samples of 5 medicines: Atrac-
tylodis Rhizoma, Pinelliae Tuber, Zingiberis Siccatum 
Rhizoma, Ephedrae Herba, and Evodiae Fructus. 

(III) Set C contained 150 samples of 5 medicines: Perillae 
Folium, Saposhinkoviae Radix, Cinnamomi Ramulus, 
Bupleuri Radix, and Puerariae Radix. 

(IV) Set D contained 300 samples of 10 medicines: Magno-
liae Flos, Rhei Rhizoma, Polyporus, Clematidis Radix, 
Nelumbinis Folum, Anglicae Sinensis Radix, Ligustici 
Rhizoma, Platycodi Radix, Citrus Sinensis Exocarpium, 
and Saussureae Radix. 

(V) Set E contained 900 samples of 30 medicines, and it 
was composed of Scutellariae Radix, Paeoniae Lactiflorae 
Radix, Hoelen, Salivae Miltiorrhizae Radix, Paeoniae 
Veitchii Radix, set A, set B, set C, and set D in sequence.

The spectra of the above data sets were measured 
on a FOSS NIRSystems instrument Model 6500 NIR 
reflectance spectrometer configured with a rapid content 
analyzer (RCA) module. The spectrometer is equipped 
with a tungsten halogen lamp as a light source, and 
samples were scanned at 2 nm intervals in the range of 
400 to 2498 nm, which encompassed visible and NIR 
wavelengths. Silicon detectors were used below 1100 
nm and succeeded by lead sulfide detectors. Each spec-
trum had 1050 data points that were acquired using the 
software Vision 3.0 (FOSS NIRSystems). The mean 
absorption spectra of each medicine are shown in Figure 
1 in which every spectrum represents the average of 30 
samples of a medicine. The spectra were analyzed and 
the identification model was built using MATLAB 6.51 
as the platform to run its Statistics Toolbox 4.1, Neural 
Network Toolbox 4.1, and other extended programs 
developed by our research team.

II. Methods

First, the original spectra were transformed by SNV 
transformation, followed by selection of two thirds of the 
samples from each set, by Kennard & Stone (KS) algo-
rithm, as the training set while the remaining as the test 
set. After PCA, the number of variables of the training 
set was reduced from 1050 to a smaller number. ANN 
was then applied to build the identification model using 
the training set. The PCA-transformed test set was then 
fed into the network to verify the performance of the 
identification model by computing the correct identifica-
tion rate (CIR) (Eq.1). The steps involved in the analysis 
will be illustrated in detail in the following sections.

 
 
      
CIR =

number of samples correctly identified
number of all samples

×  100%

	 (1)

Figure 1. The mean absorption spectra of 30 medicines: each spec-
trum represents a medicine, and was calculated from all of its 30 
samples.
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(I) Pretreatment: SNV

The absorption value of the NIR spectra are influ-
enced by particle size in powder samples, which is 
an unfavorable factor during analyzing the content of 
certain chemical components in the samples from their 
spectra. SNV is a strategy which can deal with the 
problem(11), and the calculation of SNV is followed by 
Eq.2 :
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Where y is a spectrum of any sample, n is the 
number of data points in this spectrum, ymean is the mean 
of the n log 1/R values of y, ySNV is the SNV transformed 
spectrum. For example, Figure 2 shows the original 
spectra of set A, and Figure 3 shows the SNV-trans-
formed spectra of set A. It is obvious that after the SNV 
transformation, the spectra for each medicine exhibit a 
tighter distribution pattern.

(II) Training Set Selection: The KS Algorithm

This algorithm was first proposed by Kennard and 
Stone for experimental designs(12). In our study, the 
algorithm was employed to select the most representa-
tive samples for the training set. The algorithm starts 
by finding the two most representative samples, and 
then searching for the third, fourth, etc. according to 
the following equation (Eq.3) until the number of the 
selected samples meets the goal:
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The subset mT contains the selected samples, and the 
parameter sn is the number of the samples in the subset 
mT. First, the algorithm selects a pair of spectra that are 
the farthest apart from each other in the subset mC, which 
contains all the samples, and moves them into mT. The 
spectra left in mC will be computed using the above equa-
tion and the spectrum with the largest d value will be 
moved into mT, and a new iteration begins. These samples 
in mT best represent the distribution of the whole data set. 

(III) Variable Reduction: Principle Component Analysis

PCA is aimed to transform the original data space 
into an orthogonal one. After PCA, most of the vari-
ance will be carried by a small number of variables. The 
variable that carries the most variance is referred to as 
PC 1, the variable that carries the second most variance 
is referred to as PC 2, and so forth. By keeping the PCs 
with more variance and ignoring the PCs with less vari-
ance, the number of variables is thus reduced.(13)

(IV) Identification Model: Artificial Neural Network

The multilayer perceptron (MLP) was utilized to 
establish the artificial neural network in this study. The 
network was composed of an input layer, a hidden layer, 
and an output layer, and we used a back-propagation 
algorithm, the Levenberg-Marquardt algorithm, to train 
the network. The number of nodes in the input layer was 
conformed to the number of PCs we kept after PCA. The 
number of nodes in the output layer was decided by the 
number of medicines to be identified. For instance, set 
A was composed of 5 medicines and its network had 5 
nodes in its output layer. Set D was composed of 10 medi-
cines and its network had 10 nodes in its output layer. 
The number of nodes in the hidden layer is abbrevi-
ated as nh, and its influence on the performance of the 

Figure 2. The original absorption spectra of the 150 samples in set 
A, in which a spectrum represents a sample and each medicine has 
30 samples. A1 is Citrus Undeveloped Exocarpium, A2 is Amomi 
Semen, A3 is Curcumae Radix, A4 is Achyranthis Radix, and A5 is 
Cyperus rotundus.
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Figure 3. The SNV transformed spectra of the 150 samples in set 
A, in which a spectrum represents a sample and each medicine has 
30 samples. A1 is Citrus Undeveloped Exocarpium, A2 is Amomi 
Semen, A3 is Curcumae Radix, A4 is Achyranthis Radix, and A5 is 
Cyperus rotundus.
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identification model will be discussed in the next section.
The targets, which are the ideal output vectors of the 

networks, are designed as follows: if there are k different 
medicines, the targets of the output vectors should be in 
k dimensions. In each vector there is only one 1-value 
entry accompanied by k-1 0-value entries.  For example, 
if a network is designed for identifying 3 medicines, the 
output vectors of the network should be in a 3-dimen-
sional space, and there will be only 3 possible targets, 
which are [1, 0, 0], [0, 1, 0], and [0, 0, 1] according to 
three different medicines. 

In Figure 4, the left gray rectangle is the input 
vector with “ni” input factors ( 3 × 1 matrix). The factor 
numbers of the hidden layer and the output layer are 
“nh” and “nj”. The IW means the input weight matrix 
containing the weights of the connection between the 
input layer and the first layer, and b{1} is the bias of the 

first layer and so on. The LW{2,1} is the weight of the 
first layer output to the second layer. The perceptron in 
this research is a single layer network. The variable b{2} 
means the bias of the second layer.

The other important factors and parameters used for 
building networks are listed below: the transfer function 
of the hidden layer was the hyperbolic tangent sigmoid 
transfer function (Eq. 4), ahl the output vector of the 
hidden layer and xhl the input vector of the hidden layer. 
The transfer function of the output layer was the linear 
transfer function (Eq. 5), aol the output vector of the 
output layer and xol the input vector of the output layer. 
The goal of the training process is to minimize the mean 
squared error (MSE) (F value in Eq. 6), in which N is the 
number of nodes in the output layer, a and t are output 
and target vectors. The learning rate is fixed at 0.05, and 
the maximum training epoch is 1000.
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RESULTS AND DISCUSSION

When applying PCA to different data sets, the 
amount of information contained in the same number of 
PCs is different. Table 1 shows that in sets A, B, and C, 
the accumulative variance contained in the first 3 PCs 
was near 99.0%. However, in sets D and E, which had 
more medicines, the accumulative variance was only 
about 96.6%. Although some difference did exist, the 
accumulative variance contained in the first 3 PCs of 
each set is quite large (above 95%), and the fourth PC 
contains only a little variance (below 2%), compared with 
the first three. For ease of comparing different param-
eters, like nh, we only adopt the first 3 PCs for analysis. 

Figure 4. (A) Diagram of the neural network in this research 
including the input layer, the hidden layer, and the output layer. (B) 
The graphical mathematics model of the neural network.
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Table 1. The individual and accumulative variance of the first 5 principal components of set A (5 medicines), set B (5 medicines), set C (5 
medicines), set D (10 medicines), and set E (30 medicines)

PC
Set A Set B Set C Set D Set E 

indiv. accumu. indiv. accumu. indiv. accumu. indiv. accumu. indiv. accumu.

1 90.8% 90.8% 92.3% 92.3% 87.5% 87.5% 89.6% 89.6% 88.2% 88.2%

2 4.8% 95.6% 5.4% 97.7% 9.1% 96.6% 4.1% 93.7% 6.2% 94.4%

3 3.3% 98.9% 1.3% 98.9% 2.3% 99.0% 2.9% 96.6% 2.2% 96.6%

4 0.8% 99.7% 1.0% 99.9% 0.8% 99.8% 2.0% 98.6% 1.6% 98.2%

5 0.3% 100.0% 0.0% 100.0% 0.1% 99.9% 0.7% 99.3% 0.8% 98.9%
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This study explored the performance of the identification 
model while dealing with different medicines (set A, set 
B, set C) and different numbers of medicines per set (5: 
sets A, B, and C; 10: set D; 30: set E). During the anal-
ysis of all the data sets, the only adjustable variable was 
nh, but since the initial value of the weights and biases 
in the networks were randomly generated, this made the 
networks of a same nh different. To verify the networks’ 
stability, we built 5 models for every nh.

I. Results of Sets A, B, and C (5 Medicines)

The data sets of 5 medicines were examined in this 
section, and there were no identical sample in sets A, B, 
or C. Since no generalized or reliable searching algo-
rithm is available for the determination of nh, in most of 
the cases, the trial and error method is the most common 
solution. In this study, the initial value of nh was set 
equal to the number of output nodes, and then it was 
decreased gradually to determine the optimal value.

The results of the set A analysis is shown in Table 2. 
While nh = 5 and nh = 4, all of the 10 networks reached 
100% CIRs. After that, the CIRs decreased with the 
nh. It can be seen that a higher nh did help improve the 
CIRs to some extent, but the contribution of nh stopped 
after a certain number, after which higher nh could 
only increase the computation time and the complexity 
of networks. Besides, the reason of the CIRs’ uniform 
decrement is as follows: all samples of a medicine 
were misidentified with nh = 3, all samples of 2 medi-
cines were misidentified with nh = 2; and all samples of 
3 medicines were misidentified with nh = 1. In the 25 

models built for set A (every nh has 5 networks), every 
medicine in set A could possibly be misidentified, and 
there was no medicine which was especially easy to be 
misidentified. For a network with nh = 3, where the CIR 
was 80%, all of the samples of Cyperus rotundus were 
misidentified as Amomi Semen. In the PCA score plot of 
set A (Figure 5), the distribution of all data points was 
clearly represented. Each cluster was formed by a certain 
medicine, and there was no overlap between any two 
of them. Misidentification in this 5-medicine case was 
caused by the model’s clustering of  Cyperus rotundus 
and Amomi Semen as one; thus identification of all 
Cyperus rotundus samples failed.

The results of sets B and C were exactly the same as 
set A. As the PCA score plot of their training sets (Figure 

Figure 5. The PCA score plot of the 100 samples in the training set of set A, in which each medicine has 20 samples. A1 is Citrus Undeveloped 
Exocarpium, A2 is Amomi Semen, A3 is Curcumae Radix, A4 is Achyranthis Radix, and A5 is Cyperus rotundus.

-30
-20

-10
0

10
20 -8

-6
-4

-2
0

2
4

-6

-4

-2

0

2

4

6

PC 2

First 3 PCs

PC 1

P
C

 3

-30 -20 -10 0 10 20
-10

-5

0

5

PC 1

P
C

 2

PC2 vs PC1 

-30 -20 -10 0 10 20
-10

-5

0

5

10

PC 1

P
C

 3

PC3 vs PC1 

-10 -5 0 5
-10

-5

0

5

10

PC 2

P
C

 3

PC3 vs PC2 

 

A1
A2
A3
A4
A5

Table 2. The correct identification rates (CIR) of all the networks 
built for set A, which has 100 samples in its training set and 50 
samples in the test set. Set B and set C have exactly the same results 
as set A has

nh no.
CIR (%)

Training (100) Test (50)

5 1~5 100.00 100.00 

4 1~5 100.00 100.00 

3 1~5 80.00 80.00 

2 1~5 60.00 60.00 

1 1~5 40.00 40.00 
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6 and Figure 7) showed, there was no overlap which is 
why their results were the same as set A. This proved that 
in this study the performance of the networks was mainly 
related to nh and had nothing to do with the characteristics 
of the medicines. As a whole, the optimal network for 5 
medicines is 3 × 4 × 5 (the number of nodes of each layer 
in sequence: input layer × hidden layer × output layer).

II. Results of Set D (10 Medicines)

The analysis process for set D is the same as the 
process for set A. First, we let nh = 10, which equaled the 
number of nodes in the output layer, then we pruned it 
gradually. As the results showed in Table 3, the CIRs were 
100% when nh = 10 and 9; when nh = 8, it was possible 

Figure 6. The PCA score plot of the 100 samples in the training set of set B, in which each medicine has 20 samples. B1 is Atractylodis 
Rhizoma, B2 is Pinelliae Tuber, B3 is Zingiberis Siccatum Rhizoma, B4 is Ephedrae Herba, and B5 is Evodiae Fructus.
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Figure 7. The PCA score plot of the 100 samples in the training set of set C, in which each medicine has 20 samples. C1 is the Perillae Folium, 
C2 is the Saposhinkoviae Radix, C3 is the Cinnamomi Ramulus, C4 is the Bupleuri Radix, and C5 is the Puerariae Radix.
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to misidentify all samples in one medicine; when nh = 
7, misidentification of 2 medicines was the worst; when 
nh = 6, there were no longer 100% CIRs and the worst 
model holds only a 70% CIR. In the PCA score plot for 
the training set of set D (Figure 8), there was no overlap 
between any two medicines as well, so we could infer that 
the reason of the misidentification of all samples in a medi-
cine was the same as the 5-medicine case. The greatest 
difference between the former section and this one lies 
when nh = 7 or 8, when the networks were still able to 
reach 100% CIR, and the performance of the networks did 
not descend in a specific interval when nh decreased. This 
was related to the randomly generated nature of the initial 
values of the weights and biases. Since all of the networks 
were different at the beginning, their performance varied 
when the total nodes in the networks rose. For this reason, 
the optimal network structure should be 3 × 9 × 10 to reach 
a more stable and precise model.

III. Results of Set E (30 Medicines)

For set E, we let nh = 30 at the beginning, and then 
we pruned it gradually. Compared with Tables 2 and 3, 
the most obvious difference with the results shown in 
set E listed in Table 4 was that misidentification of all 
samples in a medicine no longer occurred. The training 
(600 samples) and test (300 samples) sets here were larger 
in size than the former cases. In the PCA score plot for 
the training set in set E (Figure 9), the distribution of the 
data points was very complicated.  Most of the clusters 
were very close to each other or even overlapped. There-
fore, it made sense that the data-fitting capability of the 

Figure 8. The PCA score plot of the 200 samples in the training set of set D, in which each medicine has 20 samples. D1 is Magnoliae Flos, D2 
is Rhei Rhizoma, D3 is Polyporus, D4 is Clematidis Radix, D5 is Nelumbinis Folum, D6 is Anglicae Sinensis Radix, D7 is Ligustici Rhizoma, 
D8 is Platycodi Radix, D9 is Citrus Sinensis Exocarpium, and D10 is Saussureae Radix.
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Table 3. The correct identification rates (CIR) of all the networks 
built for set D, which has 200 samples in its training set and 100 
samples in its test set

nh no.
CIR (%)

Training (200) Test (100)

10 1~5 100.00 100.00 

9 1~5 100.00 100.00 

8 1 100.00 100.00 

2 100.00 100.00 

3 90.00 90.00 

4 100.00 100.00 

5 90.00 90.00 

7 1 80.00 80.00 

2 80.00 80.00 

3 80.00 80.00 

4 100.00 100.00 

5 90.00 90.00 

6 1 80.00 80.00 

2 70.00 70.00 

3 70.00 70.00 

4 70.00 70.00 

5 80.00 80.00 
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Table 4. The correct identification rates (CIR) of all the networks built for set E, which has 600 samples in its training set and 300 samples 
in its test set

nh no.
CIR (%)

nh no.
CIR (%)

Training (600) Test (300) Training (600) Test (300)

32 1 98.17 98.67 29 1 96.17 95.67 

2 99.17 99.67 2 98.00 97.67 

3 98.67 98.33 3 93.17 93.33 

4 96.50 96.00 4 96.83 98.33 

5 96.50 99.67 5 99.17 98.33 

31 1 98.67 98.00 28 1 96.83 97.00 

2 98.67 97.67 2 94.17 94.67 

3 99.00 98.33 3 94.67 94.33 

4 98.67 97.67 4 97.17 96.33 

5 96.00 96.00 5 93.17 93.33 

30 1 98.33 98.00 

2 99.83 99.67 

3 97.33 96.00 

4 99.67 100.00 

5 99.67 98.33  

Figure 9. The PCA score plot of the 600 samples in the training set of set E, in which each medicine has 20 samples.
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networks was not as perfect as in the cases of the small 
data sets, and the existence of partial misidentification 
rather than all the samples in a medicine was reasonable. 
For instance, in the no. 4 model built with nh = 29, there 
were 19 misidentified samples; 9 from the 2nd medicine, 
3 from the 7th medicine, 1 from the 8th medicine, 1 from 
the 21st medicine and 5 from the 27th medicine.  In the 
test set there were 5 misidentified samples; 1 from the 2nd 
medicine, 1 from the 7th medicine and 3 from the 27th 
medicine. The best network with the highest performance 
was the 4th one with nh = 30. The CIR of its training set 
was 99.67% (2 misidentification) while the CIR of the test 
set was 100%. After careful examinations, it could be 
concluded that those medicines with the most misidenti-
fied samples had more similarity in their spectra pattern/
characteristics or in successive analytical assessments.

Since not every network of nh = 30 could reach a 
100% CIR, nh was increased to 31 and 32 to search for 
better identification models. However, the result showed 
that there was no apparent improvement in the perfor-
mance, as the average CIR remained about 98%. Conse-
quently, the optimal network structure should be 3 × 30 × 
30 which is a compromised balance of performance and 
the complexity of structure.

The identification model in Woo et al. (1999) was able 
to identify 3 medicines of non-related species with a 100% 
CIR(1). In this study the best model could reach 100% 
CIRs when applied to 5, 10, and 30 medicines. The break-
through in the number of medicines showed that ANN is a 
promising method which could be applied to the identifi-
cation of more herbal medicines. Although an increase in 
the number of herbal medicines in the database would take 
more computing time and setting effort to reach the best 
identification models, the strategy of nh selection provided 
in this study could simplify the whole process. An accept-
able nh could be found immediately by a small number of 
trials, and then the best nh could be determined. 

CONCLUSIONS

This study successfully built an identification model 
for herbal medicines by NIR spectroscopy and ANN, 
and the model identified 30 medicines with a 100% CIR 
when applied to the test set. The study also provided a 
strategy for the determination of the number of nodes in 
the hidden layer, to shorten the expenditure of time in 
setting network structures. In the future, it is possible to 
increase the number of medicines in the herbal medicine 
database, and to practically apply NIR spectroscopy for 
quality assurance in the herbal medicine industry.
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