Journal of Food and Drug Analysis, Vol. 19, No. 1, 2011, Pages 9-17

Eyrma Bthve B

A Robust Identification Model for Herbal Medicine Using
Near Infrared Spectroscopy and Artificial Neural Network

CI-WEN YANG!3, SUMING CHEN"?*, FU OUYANG!, I-CHANG YANG"2 AND CHAO-YIN TSAI!?

- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University,
No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, R.O.C.
2 Bioenergy Research Center, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, R.O.C.
3. Taipei Zoo, No.30, Sec.2, Xinguang Road, Taipei, 11656, Taiwan, R.O.C.

(Received: June 28, 2010; Accepted: January 4, 2011)

ABSTRACT

A robust identification model for herbal medicine was developed by combining near-infrared spectroscopy (NIR) and artifi-

cial neural network (ANN) to discriminate raw materials of herbal medicine, which are often similar in appearance and practically

impossible to identify by visual inspection alone. The identification by chemical methods is usually higher in cost and lower in

efficiency. Compared with other modern inspection methods, NIR is an alternative, which is non-destructive, rapid, and easy to

operate. In this study, we employed ANN to analyze the absorption spectra of herbal medicines and successfully built an identifica-

tion model, which is able to identify 30 different herbal medicines. The best identification model can reach a correct identification
rate (CIR) of 99.67% when applied to a training set of 600 samples, and 100% CIR when applied to a test set of 300 samples.
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INTRODUCTION

Identification of herbal medicines plays an important
role in their processing and usage. Lots of plants can be
used as raw materials for herbal medicines, but some of
them, even not related species'), are similar in appear-
ance, and their storage as powder for transportation
makes their appearance a useless indicator for identifica-
tion. The promotion of herbal medicines in recent years,
has made it necessary and urgent to analyze them by
qualitative and quantitative inspection methods.

Common inspection methods of herbal medicines
can be roughly divided into sensory and analytical inspec-
tion. The former includes the morphological inspection
and histological technique. Although the morpholog-
ical inspection is direct and simple, its accuracy heavily
depends on the inspectors, who are somewhat subjec-
tive. The histological analysis can reveal the character-
istics of the structure and the arrangement of tissue and
cells, but it is not capable of identifying related species,
which may share similar histological characteristics.
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Analytical inspection methods include thin layer chro-
matography (TLC)®, gas chromatography (GC), high
performance liquid chromatography (HPLC)®), capillary
electrophoresis (CE)®, etc. These methods are accurate
for chemical constituents analysis, but the complicated
sample preparation procedures and long inspection time
make them impossible for online inspection. Besides, they
are destructive methods, thus inevitably damaging and
consuming samples.

Near infrared (NIR) spectroscopy is also an analyt-
ical inspection method, but its advantages, such as non-
destructive inspection, rapid measurement, simple opera-
tion, and less or no sample preparation, make it an ideal
alternative for the aforementioned methods. It has been
extensively adopted by bio-related industries such as
agriculture®, pharmacy®, etc., and there were some
applications for herbal medicines as well. Most of them
were focused on identifying related species'”), but those
applications only dealt with a small number of medi-
cines'). There was some success using artificial neural
network (ANN) to analyze NIR spectra for the identifi-
cation of bio-materials, for example, the classification of
damaged soybean seeds®, discrimination of varieties of
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green tea'”, and the discrimination of Chinese bayberry
varieties!!?. In this study, the spectra of 900 samples
from 30 different medicines was measured on a NIR
spectrometer, and then pre-processed by the standard
normal variate (SNV) transformation before the spectra
analysis. Two thirds of the spectra were selected, by
the Kennard & Stone (KS) algorithm, as the training
set and the remaining third was utilized as the test set.
The spectra of the training set were compressed by prin-
cipal component analysis (PCA), and then sent into the
networks to start training and to reach the best identifica-
tion model. Finally, the test set was used to validate the
performance of the identification models.

The purpose of this study was to provide herbal
medicine practitioners and researchers with a reliable
identification method, which takes advantage of the non—
destructive and rapid NIR spectroscopy inspection and
ANN’s high level of predictability to improve the effi-
ciency of herbal medicines identification.

MATERIALS AND METHODS
L. Materials and Apparatus

A total of 900 samples from 30 different herbal
medicine powders were provided by Sun Ten Pharmaceu-
tical Co., Ltd. Each medicine had 30 different samples,
which were loaded in 20 mL vials. For the purpose of
analysis, the data sets were designed as follows: set
A, set B, set C, set D, and set E. The first four data sets
contained no samples that were the same, and the medi-
cines in each set were randomly selected.

(I) Set A contained 150 samples of 5 medicines: Citrus
Undeveloped Exocarpium, Amomi Semen, Curcumae
Radix, Achyranthis Radix, and Cyperus rotundus.

(IT) Set B contained 150 samples of 5 medicines: Atrac-
tylodis Rhizoma, Pinelliae Tuber, Zingiberis Siccatum
Rhizoma, Ephedrae Herba, and Evodiae Fructus.

(IT) Set C contained 150 samples of 5 medicines: Perillae
Folium, Saposhinkoviae Radix, Cinnamomi Ramulus,
Bupleuri Radix, and Puerariae Radix.

(IV) Set D contained 300 samples of 10 medicines: Magno-
liae Flos, Rhei Rhizoma, Polyporus, Clematidis Radix,
Nelumbinis Folum, Anglicae Sinensis Radix, Ligustici
Rhizoma, Platycodi Radix, Citrus Sinensis Exocarpium,
and Saussureae Radix.

(V) Set E contained 900 samples of 30 medicines, and it
was composed of Scutellariae Radix, Paeoniae Lactiflorae
Radix, Hoelen, Salivae Miltiorrhizae Radix, Paeoniae
Veitchii Radix, set A, set B, set C, and set D in sequence.
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The spectra of the above data sets were measured
on a FOSS NIRSystems instrument Model 6500 NIR
reflectance spectrometer configured with a rapid content
analyzer (RCA) module. The spectrometer is equipped
with a tungsten halogen lamp as a light source, and
samples were scanned at 2 nm intervals in the range of
400 to 2498 nm, which encompassed visible and NIR
wavelengths. Silicon detectors were used below 1100
nm and succeeded by lead sulfide detectors. Each spec-
trum had 1050 data points that were acquired using the
software Vision 3.0 (FOSS NIRSystems). The mean
absorption spectra of each medicine are shown in Figure
1 in which every spectrum represents the average of 30
samples of a medicine. The spectra were analyzed and
the identification model was built using MATLAB 6.51
as the platform to run its Statistics Toolbox 4.1, Neural
Network Toolbox 4.1, and other extended programs
developed by our research team.

1. Methods

First, the original spectra were transformed by SNV
transformation, followed by selection of two thirds of the
samples from each set, by Kennard & Stone (KS) algo-
rithm, as the training set while the remaining as the test
set. After PCA, the number of variables of the training
set was reduced from 1050 to a smaller number. ANN
was then applied to build the identification model using
the training set. The PCA-transformed test set was then
fed into the network to verify the performance of the
identification model by computing the correct identifica-
tion rate (CIR) (Eq.1). The steps involved in the analysis
will be illustrated in detail in the following sections.

number of samples correctly identified
f samp y identified -\ 300,

CIR =

number of all samples

1

Asorbance (log(1/R))

-0.2

T T 1
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Welength (nm)
Figure 1. The mean absorption spectra of 30 medicines: each spec-

trum represents a medicine, and was calculated from all of its 30
samples.
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() Pretreatment: SNV

The absorption value of the NIR spectra are influ-
enced by particle size in powder samples, which is
an unfavorable factor during analyzing the content of
certain chemical components in the samples from their
spectra. SNV is a strategy which can deal with the
problemV, and the calculation of SNV is followed by
Eq.2:
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Where y is a spectrum of any sample, n is the
number of data points in this spectrum, y,,.., is the mean
of the n log 1/R values of y, ygyy is the SNV transformed
spectrum. For example, Figure 2 shows the original
spectra of set A, and Figure 3 shows the SNV-trans-
formed spectra of set A. It is obvious that after the SNV
transformation, the spectra for each medicine exhibit a
tighter distribution pattern.

(IT) Training Set Selection: The KS Algorithm

This algorithm was first proposed by Kennard and
Stone for experimental designs(lz). In our study, the
algorithm was employed to select the most representa-
tive samples for the training set. The algorithm starts
by finding the two most representative samples, and
then searching for the third, fourth, etc. according to
the following equation (Eq.3) until the number of the
selected samples meets the goal:

a0) = HEP[Z(’”C(j,:)—”’T(k,;))Z]O-S 3

The subset ”T contains the selected samples, and the
parameter sn is the number of the samples in the subset
"T. First, the algorithm selects a pair of spectra that are
the farthest apart from each other in the subset ”C, which
contains all the samples, and moves them into 7. The
spectra left in " C will be computed using the above equa-
tion and the spectrum with the largest d value will be
moved into "7, and a new iteration begins. These samples
in T best represent the distribution of the whole data set.

(IIT) Variable Reduction: Principle Component Analysis

PCA is aimed to transform the original data space
into an orthogonal one. After PCA, most of the vari-
ance will be carried by a small number of variables. The
variable that carries the most variance is referred to as
PC 1, the variable that carries the second most variance
is referred to as PC 2, and so forth. By keeping the PCs
with more variance and ignoring the PCs with less vari-
ance, the number of variables is thus reduced.'>)
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(IV) Identification Model: Artificial Neural Network

The multilayer perceptron (MLP) was utilized to
establish the artificial neural network in this study. The
network was composed of an input layer, a hidden layer,
and an output layer, and we used a back-propagation
algorithm, the Levenberg-Marquardt algorithm, to train
the network. The number of nodes in the input layer was
conformed to the number of PCs we kept after PCA. The
number of nodes in the output layer was decided by the
number of medicines to be identified. For instance, set
A was composed of 5 medicines and its network had 5
nodes in its output layer. Set D was composed of 10 medi-
cines and its network had 10 nodes in its output layer.
The number of nodes in the hidden layer is abbrevi-
ated as nh, and its influence on the performance of the
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Figure 2. The original absorption spectra of the 150 samples in set
A, in which a spectrum represents a sample and each medicine has
30 samples. Al is Citrus Undeveloped Exocarpium, A2 is Amomi
Semen, A3 is Curcumae Radix, A4 is Achyranthis Radix, and AS is
Cyperus rotundus.
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Figure 3. The SNV transformed spectra of the 150 samples in set
A, in which a spectrum represents a sample and each medicine has
30 samples. Al is Citrus Undeveloped Exocarpium, A2 is Amomi
Semen, A3 is Curcumae Radix, A4 is Achyranthis Radix, and AS is
Cyperus rotundus.
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identification model will be discussed in the next section.

The targets, which are the ideal output vectors of the
networks, are designed as follows: if there are k different
medicines, the targets of the output vectors should be in
k dimensions. In each vector there is only one 1-value
entry accompanied by k-1 O-value entries. For example,
if a network is designed for identifying 3 medicines, the
output vectors of the network should be in a 3-dimen-
sional space, and there will be only 3 possible targets,
which are [1, 0, 0], [0, 1, 0], and [0, O, 1] according to
three different medicines.

In Figure 4, the left gray rectangle is the input
vector with “ni” input factors ( 3 x 1 matrix). The factor
numbers of the hidden layer and the output layer are
“nh” and “nj”. The IW means the input weight matrix
containing the weights of the connection between the
input layer and the first layer, and b{l} is the bias of the

input output
—
—>
—
—
—
Input layer Hidden layer Output layer
(A)
IW {1,1} — LW {2,1} 74
b {1} b {2}
ni nh nj
(B)

Figure 4. (A) Diagram of the neural network in this research
including the input layer, the hidden layer, and the output layer. (B)
The graphical mathematics model of the neural network.

Journal of Food and Drug Analysis, Vol. 19, No. 1, 2011

first layer and so on. The LW{2,1} is the weight of the
first layer output to the second layer. The perceptron in
this research is a single layer network. The variable b{2}
means the bias of the second layer.

The other important factors and parameters used for
building networks are listed below: the transfer function
of the hidden layer was the hyperbolic tangent sigmoid
transfer function (Eq. 4), a;; the output vector of the
hidden layer and x;,; the input vector of the hidden layer.
The transfer function of the output layer was the linear
transfer function (Eq. 5), a,; the output vector of the
output layer and x,; the input vector of the output layer.
The goal of the training process is to minimize the mean
squared error (MSE) (F value in Eq. 6), in which N is the
number of nodes in the output layer, ¢ and ¢ are output
and target vectors. The learning rate is fixed at 0.05, and
the maximum training epoch is 1000.

a, = % @
e hl + e hl
aol = xol (5)
F=L30-a) ©)
N P i i
RESULTS AND DISCUSSION

When applying PCA to different data sets, the
amount of information contained in the same number of
PCs is different. Table 1 shows that in sets A, B, and C,
the accumulative variance contained in the first 3 PCs
was near 99.0%. However, in sets D and E, which had
more medicines, the accumulative variance was only
about 96.6%. Although some difference did exist, the
accumulative variance contained in the first 3 PCs of
each set is quite large (above 95%), and the fourth PC
contains only a little variance (below 2%), compared with
the first three. For ease of comparing different param-
eters, like nh, we only adopt the first 3 PCs for analysis.

Table 1. The individual and accumulative variance of the first 5 principal components of set A (5 medicines), set B (5 medicines), set C (5

medicines), set D (10 medicines), and set E (30 medicines)

Set A Set B Set C Set D Set E
PC

indiv. accumu. indiv. accumu. indiv. accumu. indiv. accumu. indiv. accumu.
1 90.8% 90.8% 92.3% 92.3% 87.5% 87.5% 89.6% 89.6% 88.2% 88.2%
2 4.8% 95.6% 5.4% 97.7% 9.1% 96.6% 4.1% 93.7% 6.2% 94.4%
3 3.3% 98.9% 1.3% 98.9% 2.3% 99.0% 2.9% 96.6% 2.2% 96.6%
4 0.8% 99.7% 1.0% 99.9% 0.8% 99.8% 2.0% 98.6% 1.6% 98.2%
5 0.3% 100.0% 0.0% 100.0% 0.1% 99.9% 0.7% 99.3% 0.8% 98.9%
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This study explored the performance of the identification
model while dealing with different medicines (set A, set
B, set C) and different numbers of medicines per set (5:
sets A, B, and C; 10: set D; 30: set E). During the anal-
ysis of all the data sets, the only adjustable variable was
nh, but since the initial value of the weights and biases
in the networks were randomly generated, this made the
networks of a same nh different. To verify the networks’
stability, we built 5 models for every nh.

L. Results of Sets A, B, and C (5 Medicines)

The data sets of 5 medicines were examined in this
section, and there were no identical sample in sets A, B,
or C. Since no generalized or reliable searching algo-
rithm is available for the determination of nA, in most of
the cases, the trial and error method is the most common
solution. In this study, the initial value of nh was set
equal to the number of output nodes, and then it was
decreased gradually to determine the optimal value.

The results of the set A analysis is shown in Table 2.
While nh = 5 and nh = 4, all of the 10 networks reached
100% CIRs. After that, the CIRs decreased with the
nh. It can be seen that a higher n4 did help improve the
CIRs to some extent, but the contribution of nh stopped
after a certain number, after which higher n4 could
only increase the computation time and the complexity
of networks. Besides, the reason of the CIRs’ uniform
decrement is as follows: all samples of a medicine
were misidentified with nh = 3, all samples of 2 medi-
cines were misidentified with n4 = 2; and all samples of
3 medicines were misidentified with nh = 1. In the 25

PC2 vs PC1

0 4
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models built for set A (every nh has 5 networks), every
medicine in set A could possibly be misidentified, and
there was no medicine which was especially easy to be
misidentified. For a network with ns = 3, where the CIR
was 80%, all of the samples of Cyperus rotundus were
misidentified as Amomi Semen. In the PCA score plot of
set A (Figure 5), the distribution of all data points was
clearly represented. Each cluster was formed by a certain
medicine, and there was no overlap between any two
of them. Misidentification in this 5-medicine case was
caused by the model’s clustering of Cyperus rotundus
and Amomi Semen as one; thus identification of all
Cyperus rotundus samples failed.

The results of sets B and C were exactly the same as
set A. As the PCA score plot of their training sets (Figure

Table 2. The correct identification rates (CIR) of all the networks
built for set A, which has 100 samples in its training set and 50
samples in the test set. Set B and set C have exactly the same results
as set A has

CIR (%)
nh no.
Training (100) Test (50)

5 1~5 100.00 100.00
4 1~5 100.00 100.00
3 1~5 80.00 80.00
2 1~5 60.00 60.00

1 1~5 40.00 40.00

First 3 PCs
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Figure 5. The PCA score plot of the 100 samples in the training set of set A, in which each medicine has 20 samples. Al is Citrus Undeveloped
Exocarpium, A2 is Amomi Semen, A3 is Curcumae Radix, A4 is Achyranthis Radix, and AS is Cyperus rotundus.
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6 and Figure 7) showed, there was no overlap which is
why their results were the same as set A. This proved that
in this study the performance of the networks was mainly
related to nh and had nothing to do with the characteristics
of the medicines. As a whole, the optimal network for 5
medicines is 3 x 4 x 5 (the number of nodes of each layer
in sequence: input layer x hidden layer x output layer).

PC2 vs PC1
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o
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-10 0 20
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IL. Results of Set D (10 Medicines)

The analysis process for set D is the same as the
process for set A. First, we let ni = 10, which equaled the
number of nodes in the output layer, then we pruned it
gradually. As the results showed in Table 3, the CIRs were
100% when nh = 10 and 9; when nh = 8, it was possible

First 3 PCs

PC3 vs PC1

;
4

PC3

[ S

b 1

-10 0 10
PC1

PC3vs PC2

20 30

*

PC3

PC2

\
SRS

™~
N
N
N
N
N

™S~
N
N
™~
N
N

[ S
[/

30

-5

Figure 6. The PCA score plot of the 100 samples in the training set of set B, in which each medicine has 20 samples. Bl is Atractylodis
Rhizoma, B2 is Pinelliae Tuber, B3 is Zingiberis Siccatum Rhizoma, B4 is Ephedrae Herba, and BS is Evodiae Fructus.
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Figure 7. The PCA score plot of the 100 samples in the training set of set C, in which each medicine has 20 samples. C1 is the Perillae Folium,
C2 is the Saposhinkoviae Radix, C3 is the Cinnamomi Ramulus, C4 is the Bupleuri Radix, and C5 is the Puerariae Radix.
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to misidentify all samples in one medicine; when nh =
7, misidentification of 2 medicines was the worst; when
nh = 6, there were no longer 100% CIRs and the worst
model holds only a 70% CIR. In the PCA score plot for
the training set of set D (Figure 8), there was no overlap
between any two medicines as well, so we could infer that
the reason of the misidentification of all samples in a medi-
cine was the same as the 5-medicine case. The greatest
difference between the former section and this one lies
when nh = 7 or 8, when the networks were still able to
reach 100% CIR, and the performance of the networks did
not descend in a specific interval when nh decreased. This
was related to the randomly generated nature of the initial
values of the weights and biases. Since all of the networks
were different at the beginning, their performance varied
when the total nodes in the networks rose. For this reason,
the optimal network structure should be 3 x 9 x 10 to reach
a more stable and precise model.

I11. Results of Set E (30 Medicines)

For set E, we let nh = 30 at the beginning, and then
we pruned it gradually. Compared with Tables 2 and 3,
the most obvious difference with the results shown in
set E listed in Table 4 was that misidentification of all
samples in a medicine no longer occurred. The training
(600 samples) and test (300 samples) sets here were larger
in size than the former cases. In the PCA score plot for
the training set in set E (Figure 9), the distribution of the
data points was very complicated. Most of the clusters
were very close to each other or even overlapped. There-
fore, it made sense that the data-fitting capability of the
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Table 3. The correct identification rates (CIR) of all the networks
built for set D, which has 200 samples in its training set and 100
samples in its test set

CIR (%)
nh no.
Training (200) Test (100)
10 1~5 100.00 100.00
9 1~5 100.00 100.00
8 1 100.00 100.00
2 100.00 100.00
3 90.00 90.00
4 100.00 100.00
5 90.00 90.00
7 1 80.00 80.00
2 80.00 80.00
3 80.00 80.00
4 100.00 100.00
5 90.00 90.00
6 1 80.00 80.00
2 70.00 70.00
3 70.00 70.00
4 70.00 70.00
5 80.00 80.00
First 3 PCs
— T T
. I e D2
I o D3 [
—— D D4 ||
T —T—1]—] ¢ D5
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Figure 8. The PCA score plot of the 200 samples in the training set of set D, in which each medicine has 20 samples. D1 is Magnoliae Flos, D2
is Rhei Rhizoma, D3 is Polyporus, D4 is Clematidis Radix, D5 is Nelumbinis Folum, D6 is Anglicae Sinensis Radix, D7 is Ligustici Rhizoma,
D8 is Platycodi Radix, D9 is Citrus Sinensis Exocarpium, and D10 is Saussureae Radix.
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Table 4. The correct identification rates (CIR) of all the networks built for set E, which has 600 samples in its training set and 300 samples

in its test set

CIR (%) CIR (%)
nh no. nh no.
Training (600) Test (300) Training (600) Test (300)
32 1 98.17 98.67 29 1 96.17 95.67
2 99.17 99.67 2 98.00 97.67
3 98.67 98.33 3 93.17 93.33
4 96.50 96.00 4 96.83 98.33
5 96.50 99.67 5 99.17 98.33
31 1 98.67 98.00 28 1 96.83 97.00
2 98.67 97.67 2 94.17 94.67
3 99.00 98.33 3 94.67 94.33
4 98.67 97.67 4 97.17 96.33
5 96.00 96.00 5 93.17 93.33
30 1 98.33 98.00
2 99.83 99.67
3 97.33 96.00
4 99.67 100.00
5 99.67 98.33
10 RS First 3 PCs
® j\ i
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Figure 9. The PCA score plot of the 600 samples in the training set of set E, in which each medicine has 20 samples.
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networks was not as perfect as in the cases of the small
data sets, and the existence of partial misidentification
rather than all the samples in a medicine was reasonable.
For instance, in the no. 4 model built with nk = 29, there
were 19 misidentified samples; 9 from the 2nd medicine,
3 from the 7th medicine, 1 from the 8th medicine, 1 from
the 21st medicine and 5 from the 27th medicine. In the
test set there were 5 misidentified samples; 1 from the 2nd
medicine, 1 from the 7th medicine and 3 from the 27th
medicine. The best network with the highest performance
was the 4th one with ni = 30. The CIR of its training set
was 99.67% (2 misidentification) while the CIR of the test
set was 100%. After careful examinations, it could be
concluded that those medicines with the most misidenti-
fied samples had more similarity in their spectra pattern/
characteristics or in successive analytical assessments.

Since not every network of nh = 30 could reach a
100% CIR, nh was increased to 31 and 32 to search for
better identification models. However, the result showed
that there was no apparent improvement in the perfor-
mance, as the average CIR remained about 98%. Conse-
quently, the optimal network structure should be 3 x 30 x
30 which is a compromised balance of performance and
the complexity of structure.

The identification model in Woo ef al. (1999) was able
to identify 3 medicines of non-related species with a 100%
CIRW. In this study the best model could reach 100%
CIRs when applied to 5, 10, and 30 medicines. The break-
through in the number of medicines showed that ANN is a
promising method which could be applied to the identifi-
cation of more herbal medicines. Although an increase in
the number of herbal medicines in the database would take
more computing time and setting effort to reach the best
identification models, the strategy of nk selection provided
in this study could simplify the whole process. An accept-
able nh could be found immediately by a small number of
trials, and then the best nA could be determined.

CONCLUSIONS

This study successfully built an identification model
for herbal medicines by NIR spectroscopy and ANN,
and the model identified 30 medicines with a 100% CIR
when applied to the test set. The study also provided a
strategy for the determination of the number of nodes in
the hidden layer, to shorten the expenditure of time in
setting network structures. In the future, it is possible to
increase the number of medicines in the herbal medicine
database, and to practically apply NIR spectroscopy for
quality assurance in the herbal medicine industry.
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