Method of Test for Cu-pyropheophytin A in Edible Oils

1. Scope

This method is applicable to the determination of Cu-pyropheophytin a, the major copper chlorophyll, in edible oils.

2. Method

After extraction and purification, Cu-pyropheophytin a is determined by high-performance liquid chromatography (HPLC) and confirmed by liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS²) or liquid chromatography/ tandem mass spectrometry (LC/MS/MS).

2.1. Equipments

- **2.1.1.** High-performance liquid chromatograph
 - **2.1.1.1.** Detector: photodiode array detector.
 - **2.1.1.2.** Column: GL Sciences InertSustain C18, 2-μm, 2.1-mm i.d. × 10-cm, or an equivalent product.
- 2.1.2. Liquid chromatograph/high resolution tandem mass spectrometer
 - 2.1.1.1. Ion source: negative ion atmospheric pressure chemical ionization, APCI⁻.
 - **2.1.1.2.** Column: HALO C18, 2.7-µm, 4.6-mm i.d. × 10-cm, or an equivalent product.
- 2.1.3. Liquid chromatograph/tandem mass spectrometer
 - 2.1.1.1. Ion source: negative ion atmospheric pressure chemical ionization, APCI⁻.
 - **2.1.1.2.** Column: HALO C18, 2.7-µm, 4.6-mm i.d. × 7.5-cm, or an equivalent product.
- **2.1.4.** Solid phase extraction vacuum manifolds.
- 2.1.5. Nitrogen evaporator.

2.2. Chemicals

Petroleum ether, HPLC grade;

Ethyl ether, HPLC grade;

Acetone, HPLC grade;

Methanol, HPLC grade;

Anhydrous ethanol, HPLC grade;

Ammonium acetate, GR grade;

Milli-Q water, resistivity \geq 18 M Ω · cm (25 °C);

Cu-pyropheophytin a, reference standard.

2.3. Apparatus

- 2.3.1. Centrifuge tube: 15-mL, PP.
- **2.3.2.** Membrane filter: 0.22-µm, Nylon.
- **2.3.3.** Solid phase extraction cartridge: Sep-Pak[®] silica, 1-g, 6-mL, or an equivalent product.

2.4. Reagents

2.4.1. 1 M ammonium acetate solution

Dissolve 77 g of ammonium acetate in Milli-Q water and dilute with Milli-Q water to 1000 mL.

2.4.2. Mobile phase for HPLC

Solvent A: methanol: 1 M ammonium acetate (8:2, v/v).

Solvent B: acetone.

Solvent C: methanol.

Solvent D: Milli-Q water.

2.4.3. Mobile phase for LC/HRMS²

Solvent A: acetone.

Solvent B: methanol.

2.4.4. Mobile phase for LC/MS/MS

Solvent A: methanol.

Solvent B: anhydrous ethanol.

2.5. Standard solution preparation

Transfer about 10 mg of Cu-pyropheophytin a reference standard accurately weighed into 10-mL volumetric flask, dissolve and dilute to volume with acetone as a stock solution. When to use, dilute the stock solution with acetone to 0.05 - 5.0 μ g/mL as standard solutions.

2.6. Sample solution preparation

Transfer about 1 g of the sample accurately weighed into a centrifuge tube and transfer the sample from the tube into a Sep-Pak[®] silica cartridge by a plastic dropper. Wash the centrifuge tube with 3 mL of petroleum ether and transfer the washing solution into the cartridge. Repeat the-washing step twice. Discard the eluents. Wash the cartridge with 9 mL of petroleum ether: ethyl ether (9:1, v/v) and discard the eluent. Add 6 mL of acetone to the cartridge, collect the eluent and evaporate to dryness by gently flushing with a stream of nitrogen at 25° C. Dissolve the residue with 1 mL of acetone, then filter the solution with a membrane filter, and use it as the sample solution.

2.7. Identification and quantification

Separately inject about 20 μ L of the sample solution and the standard solutions into the HPLC and perform HPLC analysis. Identify Cu-pyropheophytin a by retention times and absorption spectra. Calculate the amount of Cu-pyropheophytin a in the sample by the following formula:

The amount of Cu-pyropheophytin a in the sample (ppm) = $\frac{C \times V}{M}$

where

- C: the concentration of Cu-pyropheophytin a in the sample solution calculated by the standard curve (μ g/mL)
- V: the make up volume of sample (mL)
- M: the weight of sample (g)

HPLC operating conditions:

Photodiode array detector: 430 nm.

Column: GL Sciences InertSustain C18, 2 µm, 2.1-mm i.d. × 10-cm.

Column temperature: 30 °C.

Mobile phase: gradient.

Time	Solvent A	Solvent B	Solvent C	Solvent D
(min)	(%)	(%)	(%)	(%)
0.0 ightarrow 3.0	$30 \rightarrow 30$	$0 \rightarrow 0$	$0 \rightarrow 0$	$70 \rightarrow 70$
3.0 ightarrow 7.0	$30 \rightarrow 100$	$0 \rightarrow 0$	$0 \rightarrow 0$	$70 \rightarrow 0$
7.0 ightarrow 9.0	$100 \rightarrow 100$	$0 \rightarrow 0$	$0 \rightarrow 0$	$0 \rightarrow 0$
9.0 ightarrow 11.0	$100 \rightarrow 50$	$0 \rightarrow 25$	$0 \rightarrow 25$	$0 \rightarrow 0$
11.0 ightarrow 13.0	$50 \rightarrow 50$	25 ightarrow 25	25 ightarrow 25	$0 \rightarrow 0$
13.0 ightarrow 15.0	$50 \rightarrow 0$	25 ightarrow 50	25 ightarrow 50	$0 \rightarrow 0$
15.0 ightarrow 25.0	$0 \rightarrow 0$	$50 \rightarrow 50$	50 ightarrow 50	$0 \rightarrow 0$
$25.0 \rightarrow 26.0$	$0 \rightarrow 0$	50 ightarrow 70	50 ightarrow 30	$0 \rightarrow 0$
$26.0 \rightarrow 35.0$	$0 \rightarrow 0$	70 ightarrow 90	30 ightarrow 10	$0 \rightarrow 0$
35.0 ightarrow 35.1	$0 \rightarrow 30$	90 ightarrow 0	10 ightarrow 0	$0 \rightarrow 70$
35.1 ightarrow 40.0	$30 \rightarrow 30$	$0 \rightarrow 0$	$0 \rightarrow 0$	$70 \rightarrow 70$

Injection volume: 20 µL.

Flow rate: 0.25 mL/min.

2.8. Confirmation

2.8.1. LC/HRMS²

Separately inject about 40 μ L of the HPLC positive sample solution and the standard solution into the LC/HRMS² and operate according to the following LC/HRMS² conditions. Identify Cu-pyropheophytin a based on retention times, mass accuracy (< 5 ppm) and relative ion intensities.

LC/HRMS² operating conditions:

Column: HALO C18, 2.7-µm, 4.6-mm i.d. × 10-cm.

Column temperature: 30 °C.

Mobile phase: gradient.

Time (min)	Solvent A (%)	Solvent B (%)
0.0 → 10.0	$5 \rightarrow 80$	$95 \rightarrow 20$
10.0 → 11.0	80 → 100	$20 \rightarrow 0$

$11.0 \rightarrow 14.0$	100 ightarrow 100	$0 \rightarrow 0$
14.0 ightarrow 14.1	$100 \rightarrow 5$	0 ightarrow 95
$14.1 \rightarrow 21.0$	5 ightarrow 95	95 ightarrow 95

Injection volume: 40 µL.

Flow rate: 1 mL/min.

Ion source: negative ion atmospheric pressure chemical ionization, APCI⁻. Collision energy: 20 eV.

Detection mode: product ion scan.

Resolution: 70000.

Analyte	Precursor ion (<i>m/z</i>)	Product ion (<i>m/z</i>)	
		522.1468	
Cu-pyropheophytin a	873.4749	550.1799	
		594.1697	

2.8.2. LC/MS/MS

Separately inject about 40 μ L of the HPLC positive sample solution and the standard solution into the LC/MS/MS and operate according to the following LC/MS/MS conditions. Identify Cu-pyropheophytin a based on retention times and relative ion intensities.

LC/MS/MS operating conditions:

Column: HALO C18, 2.7-µm, 4.6-mm i.d. × 7.5-cm.

Column temperature: 30 °C.

Time (min)	Solvent A (%)	Solvent B (%)	
0.0 → 1.0	$100 \rightarrow 70$	$0 \rightarrow 30$	
$1.0 \rightarrow 6.0$	$70 \rightarrow 40$	$30 \rightarrow 60$	
6.0 → 14.0	$40 \rightarrow 0$	$60 \rightarrow 100$	
14.0 → 15.5	$0 \rightarrow 0$	100 → 100	
15.5 → 16.0	$0 \rightarrow 100$	$100 \rightarrow 0$	
$16.0 \rightarrow 20.0$	100 ightarrow 100	$0 \rightarrow 0$	

Mobile phase: gradient.

Injection volume: 40 µL.

Flow rate: 1 mL/min.

Ion source: negative ion atmospheric pressure chemical ionization, APCI⁻.

Curtain gas: 20 psi.

Collision gas: high.

Gas 1: 55 psi.

Gas 2: 0 psi.

Temperature: 400 °C.

Detection mode: multiple reaction monitoring (MRM).

Analyte	Precursor ion (m/z) >	Declustering	Collision
	product ion (<i>m/z</i>)	potential (V)	energy (eV)
Cu-pyropheophytin a	873.5 > 522	-68	-50
	873.5 > 535	-68	-57
	873.5 > 550	-68	-50
	873.5 > 594	-68	-38

Notes:

- 1. All the parameters can be adjusted depending on the instruments used if the above conditions are not applicable.
- 2. Maximum permitted tolerances for relative ion intensities by LC/HRMS² or LC/MS/MS are as follows:

Relative ion intensity	Tolerance
(% of base peak)	(%)
>50	± 20
>20~50	± 25
>10~20	± 30
\leq 10	± 50

3. Further validation is necessary when interference compounds appear in samples.