化粧品中局部麻醉劑成分檢驗方法之建立

許闊顯 黃守潔 陳玉盆 周秀冠 陳惠芳

食品藥物管理署研究檢驗組

摘要

本研究利用超高效液相層析串聯質譜法(ultra - performance liquid chromatographytandem mass spectrometry, UPLC/MS/MS)建立一簡單、快速可同時分析化粧品中benzocaine、cocaine、dibucaine、lidocaine、procaine及tetracaine等6種局部麻醉劑之檢驗方法。檢體以10 mM甲酸銨之50%甲醇溶液溶解並定容後,經Waters AQUITY UPLC BEH層析管柱(2.1 × 150 mm, 1.7 μ m),採用10 mM甲酸銨溶液及甲醇/乙腈(4:1, ν / ν)溶液為移動相作梯度沖提,並以電灑游離法(ESI)搭配多重反應偵測模式(multiple reaction monitoring, MRM)偵測,6種成分之標準曲線線性範圍為5 - 25 ng/mL,線性迴歸係數 r^2 皆為0.995以上,同日內及異日間之相對標準偏差均小於9.1%,添加回收試驗之回收率介於85.3 - 118.5%,相對標準偏差皆小於12.5%,定量極限皆可達1.25 μ g/g,本方法將公開供各界參考引用。

關鍵詞:化粧品、局部麻醉劑、超高效液相層析串聯質譜法

前言

隨著時代演進,人類在醫學上從古至今不斷的進步,麻醉劑從外科手術至醫學美容上扮演著舉足輕重的腳色。麻醉劑可暫時性阻斷神經傳導進而抑制或減緩知覺的感受,最常用於減緩手術中痛覺傳遞。麻醉劑依其作用之部分可分為全身麻醉及局部麻醉劑,全身麻醉主要抑制中樞神經系統,其作用原理至今尚未完全明瞭;局部麻醉劑則是與周邊神經系統神經膜上鈉離子通道中鈉離子結合,進而抑制神經衝動傳遞達到知覺減緩或麻痺作用(1)。局部麻醉劑主要結構分為芬香環、中間連結、末端胺類官能基等三部分,依據其中間連結結構方式分為酯類(ester)與醯胺類(amide)(2)。依據文獻記載大約西元1500年於南美祕魯印地安人就有取

用古柯植物(coca plant)葉子作為藥物或食用, 在1860年,科學家從古柯植物葉子中提煉出一 種生物鹼並命名為cocaine,於1884年,年輕的 眼科醫牛Carl Koller 於臨床上發現在眼科手術 中注入cocaine發現可以達到局部區域減緩疼痛 效果因而開啟科學家關於局部麻醉劑之相關研 究(3)。1884年後人們開始大量使用cocaine,惟 cocaine具有藥物成癮性,而過多cocaine會阻礙 腦部神經傳導物質多巴胺傳遞、影響正腎上腺 素及血清素攝取、加速大腦老化、神經系統與 血管收縮、瞳孔放大及心跳不正常等,有鑑於 cocaine的成癮性強,美國於1914年將cocaine列 為禁藥,但是目前全世界cocaine還是最為氾濫 之毒品(4)。由於cocaine存在上述之缺點,科學 家開始合成出其他局部麻醉劑如benzocaine、 dibucaine、procaine等,並針對各種局部麻醉 劑訂定不同之使用規範。我國於民國94年4月 21日公告(5)增列為化粧品中禁止使用成分。近 年來,至醫美診所或美容中心進行「微整形」 的民眾日益增加,為減緩不適感,曾發現於唇 部護理產品中添加局部麻醉劑,為確保民眾健 康,並配合行政管理需求,本研究擬利用超高 效液相層析串聯式質譜法,針對6種局部麻醉 劑建立快速簡便之檢測方法,以利應用於上市 後產品之監測,確保產品之衛生安全。

材料與方法

一、材料

(一)試藥: benzocaine、cocaine、dibucaine、lidocaine、procaine及tetracaine對照用標準品皆USP級標準品;甲醇及乙腈採用液相層析級;甲酸銨購自Sigma-Aldrich (Sigma-Aldrich Corp., St. Louis, MO, USA);濾膜(0.22 μm, Nylone材質)購自Millipore (Merck KGaA, Darmstadt, Germany)。

二儀器設備

液相層析系統含自動進樣裝置、線上除氣裝置、四動相混合幫浦與10 L樣品圈 (sample loop)(Waters Corp., Milford, MA, USA)搭配串聯式質譜系統,採用電灑游離法(electrospray ionization, ESI)。所使用霧化氣體(sheath gas)及去溶劑氣體(desolvation gas)皆為氦氣;碰撞室(collision chamber)內所使用之碰撞氣體(collision gas)為氫氣。層析管柱(Acquity UPLC BEH C-18, I.D. 2.1 × 150 mm, 1.7μm, Waters Corp.)。超純水系統(Milli-Q, Billerica, MA, USA)。

二、標準品原液之配製

分別取6種局部麻醉劑對照用標準品各約50 mg,精確稱定,分別以50%甲醇溶液溶

解並定容至50 mL,作為標準原液(1000 μ g/mL),4°C儲藏。

三、檢液之配製

取經均質之檢體約1.0 g,精確稱定,加入 10 mL含10 mM 甲酸銨之50%甲醇溶液溶解,經超音波振盪30分鐘後,以含10 mM 甲酸銨之50%甲醇溶液定容至25 mL,再稀釋10倍,以 0.22 μm Nylon 濾膜過濾後,供做檢液。

四、液相層析串聯質譜條件

(一)液相層析儀

層析管柱:Acquity UPLC BEH C-18, 2.1

 \times 150 mm , 1.7 μ m

移動相:A液為0.1%甲酸溶液;B液為甲

醇/乙腈(4:1, v/v)溶液,移動相梯

度如表一

層析管柱溫度:35℃

流速: 0.3 mL/min 注入量: 2.5 μL

口串聯質譜儀(離子源採電灑法離子化,偵

測正/負離子)

毛細管電壓:3.0 kV

離子源溫度:150℃

溶媒揮散溫度:500℃

偵測模式:多重反應偵測

五、標準曲線製作

精確量取6種局部麻醉劑混合標準溶液, 濃度範圍為5 - 25 ng/mL,經濾膜過濾後進行

表一、梯度沖提(gradient)條件

	時間	Ī	移動相	1溶液	ŽA (%)	移動村	目溶液	₹B (%)
0	\rightarrow	2	70	\rightarrow	70	30	\rightarrow	30
2	\rightarrow	2.5	70	\rightarrow	100	30	\rightarrow	0
2.5	\rightarrow	6.5	100	\rightarrow	100	0	\rightarrow	0
6.5	\rightarrow	7	100	\rightarrow	70	0	\rightarrow	30
7	\rightarrow	10	70	\rightarrow	70	30	\rightarrow	30

分析,以波峰面積對濃度作圖,製作標準曲線。

六、重複性分析

一同日間(intraday)

配製5種濃度的標準溶液,於同一日內連續分析3次,計算相對標準偏差(RSD%),n=3。

二異日間(interday)

配製5種濃度的標準溶液,於不同3日分析,每一濃度重複分析3次,計算相對標準偏差(RSD%),n=9。

七、添加回收試驗

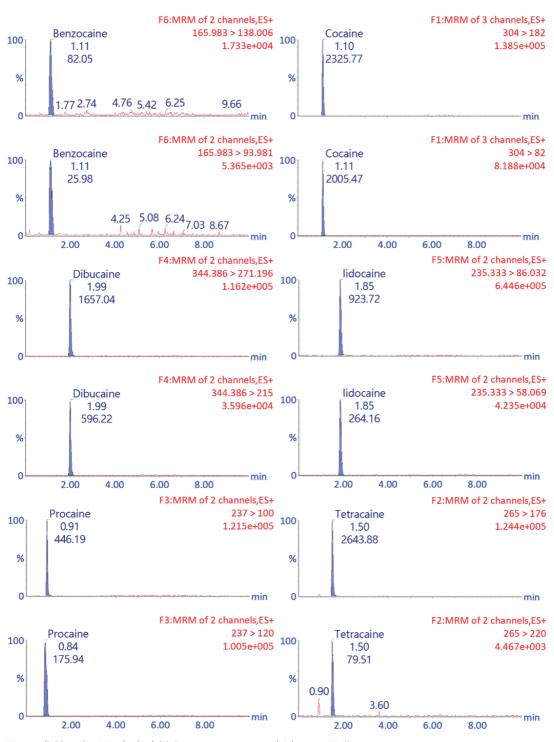
取空白檢體約1.0g,添加3種不同濃度局部麻醉劑標準品,重複分析3次,求其濃度,計算其回收率(recovery)。

八、定量極限評估

取經均質之空白檢體,加入適量標準溶液分別分析,每一添加量進行3重複試驗,就所得波峰之訊號強度計算其訊噪比(S/N ratio),以定性離子訊噪比大於3且定量離子訊噪比大於10之最低濃度為檢驗方法之定量極限(limit of quantification, LOQ)。

結果與討論

一、LC/MS/MS最適分析條件


本研究分別針對Acquity UPLC BEH C18、CSH Fluoro-Phenyl、CORTECS C18⁺及Acquity UPLC HSS T3等4種層析管柱進行評估,結果以Acquity UPLC BEH C18 (I.D. 2.1 × 150 mm, 1.7 μm)有較好的分析效果。移動相A採用含10 mM甲酸銨之50%甲醇溶液,移動相B為甲醇與乙睛以4:1 (v/v)之混合溶液,進行梯度沖提,梯度條件如表一,流速為0.3 mL/min,可

於10分鐘內完成分析(圖一)。利用正離子電灑 法多重反應偵測,6種局部麻醉劑成分選定之 母離子皆為[M+H]⁺,由母離子所形成的碎片 中,挑選具分子特異性之子離子做為MRM定 性離子,以訊號較強的子離子做為定量離子, 所得最佳化參數值如表二所示。

二、方法確效試驗

6種局部麻醉劑之標準溶液線性範圍為5 - 25 ng/mL,分別配製5種不同濃度之標準溶 液,於同日內及異日間分析,其結果如表三, 同日內及異日間試驗之相對標準偏差分別介於 0.87 - 8.53%及0.24 - 9.15%之間,顯示具良好 之再現性。取經均質稀釋25倍後之空白檢體, 添加6種待測物混合標準溶液,使其最終濃度 介於5-15 ng/g,所得之添加回收率如表四所 示,經稀釋25倍之空白檢體添加回收結果受基 質影響,其回收率及相對標準偏差不佳。將均 匀基質稀釋250倍後之空白檢體,添加6種待測 物混合標準溶液,使其最終濃度介於5-15 ng/g, 所得之添加回收率如表四所示其回收率介於 85.3 - 118.5%,相對標準偏差(RSD)均小於 12.5%,稀釋250倍之空白檢體添加回收結果 減少基質干擾影響,其回收率及相對標準偏 差較佳。以定性離子訊噪比大於3且定量離子 大於10之最低濃度為檢驗方法之定量極限, benzocaine \ cocaine \ dibucaine \ lidocaine \ procainee及tetracaine均為1.25 µg/g。

本研究透過超高效液相層析串聯質譜之優勢,可準確鑑別及定量,方法之流程簡單,回收率及再現性皆均符合歐盟2002/657/EC⁽⁶⁾要求。本檢驗方法將公開供各界作為檢驗化粧品中6種局部麻醉劑成分之參考。

圖一、化粧品中6種局部麻醉劑成分以LC/MS/MS分析之MRM圖譜

表二、多重反應偵測(MRM)條件

分析物	離子化模式	離子對		碰撞能量
24 11114	1323 1250	前驅離子(m/z) >產物離子(m/z	z) (V)	(eV)
Benzocaine	$ESI^{^+}$	$166 > 138^{a}$	28	12
Benzocaine	ESI	166 > 94	28	16
G:	Eq. [†]	304 > 182ª	25	20
Cocaine	$\mathrm{ESI}^{^{+}}$	304 > 82	35	30
D.1	DOI+	344.4 > 271ª	16	20
Dibucaine	$\mathrm{ESI}^{^{+}}$	344.4 > 215	16	30
T'11	EGI [†]	235 > 86 ^a	20	18
Lidocaine	$\mathrm{ESI}^{^{+}}$	235 > 58	30	34
D .	Eq. [†]	$237 > 100^{a}$	25	15
Procaine	$\mathrm{ESI}^{^{+}}$	237 > 120	25	15
T. (EGI ⁺	265 > 176 ^a	25	15
Tetracaine	ESI ⁺	265 > 220	25	15

a. 表定量離子對

表三、6種局部麻醉劑成分之同日(intar-day)及異日(inter-day)間重複性分析結果

C 1		Concentration (ng/mL)				RSD (%)	
Compound	1	2	3	4	5	Intraday	Interday
Benzocaine	5	10	15	20	25	3.31 - 5.52	2.26 - 6.63
Cocaine	5	10	15	20	25	1.60 - 5.41	0.95 - 5.55
Dibucaine	5	10	15	20	25	1.55 - 2.96	0.45 - 1.94
Lidocaine	5	10	15	20	25	0.87 - 2.06	0.42 - 1.40
Procaine	5	10	15	20	25	2.16 - 8.53	0.24 - 4.79
Tetracaine	5	10	15	20	25	4.29 - 8.20	1.19 - 9.15

參考文獻

- 1. Becker, D.E. and Reed, K.L. 2012. Local anesthetics: review of pharmacological considerations. Anesth. Prog. 59: 90-102.
- 2. GPATTutor.com. 2015. GPAT study material medicinal chemistry: local anesthetics. [http://
- www.gpattutor.com/SampleContent/Sample-Content2.aspx].
- 3. Mclure, H.A. and Rubin, A.P. 2005. Review of local anesthetics agents. Minerva Anest. 71: 59-74.
- 4. Wikipedia. 2015. Local anesthetics. [https://en.wikipedia.org/wiki/Local_anesthetic].

表四、添加6種局部麻醉劑成分檢體經稀釋25倍後 之回收結果

Spiked level Recovery Compound RSD (%) (%)(ng/g) 5 16.61 29.90 Benzocaine 10 14.92 7.39 15 15.81 35.33 5 10.07 90.63 Cocaine 10 37.58 15.70 15 38.81 2.13 5 16.44 4.56 Dibucaine 10 11.73 7.36 15 11.65 4.23 5 12.98 2.82 Lidocaine 10 13.33 3.38 15 13.45 3.17 5 23.19 9.48 Procaine 10 19.88 4.46 15 18.04 2.99 5 -0.74 -127.89 Tetracaine 10 4.94 77.09 15 9.19 5.15

表五、添加6種局部麻醉劑成分檢體經稀釋250倍後 之回收結果

CH Kildsit							
Compound	Spiked level (ng/g)	Recovery ^a (%)	RSD (%)				
	5	87.86	12.41				
Benzocaine	10	118.53	8.83				
	15	92.60	11.87				
	5	101.42	4.42				
Cocaine	10	108.41	1.46				
	15	115.44	2.78				
	5	93.44	2.10				
Dibucaine	10	93.32	0.71				
	15	95.64	0.36				
	5	101.97	1.75				
Lidocaine	10	104.33	0.33				
	15	106.74	1.26				
	5	103.15	4.13				
Procaine	10	103.24	7.52				
	15	101.48	5.55				
	5	85.29	6.93				
Tetracaine	10	99.18	6.00				
	15	102.55	3.38				

a. n=3

a. n=3

- 5. 食品藥物管理署。2016。化粧品衛生管理 條例暨相關法規彙編。129頁。衛生福利部 食品藥物管理署。台北。[http://www.fda. gov.tw/TC/siteList.aspx?sid=1912]。
- 6. Commission of the European. 2002.

Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the analytical methods and the interpretation of results. 2002/657/EC, OJ L221/8.

Determination of Local Anesthetics in Cosmetics by Liquid Chromatography - Tandem Mass Spectrometry

KUO-HSIEN HSU, SHOU-CHIEH HAUNG, YU-PEN CHEN, HSIU-KUAN CHOU AND HWEI-FANG CHENG

Division of Research and Analysis, TFDA

ABSTRACT

A simple and rapid method was developed for the quantification of 6 local anesthetics, namely benzocaine, cocaine, dibucaine, lidocaine, procaine and tetracaine in cosmetics. The anesthetics in the samples were extracted by 50% methanol containing 10 mM ammonium formate and then analyzed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) with an electrospray ionization (ESI) interface. The LC separation was performed using a Waters AQUITY UPLC BEH C-18 column (2.1×150 mm, $1.7 \mu m$) and gradient elution with a mobile phase consisting of 10 mM ammonium formate solution and methanol/acetonitrile solution (4:1, v/v). The linear concentrations of the 6 local anesthetic solutions were in the range of 5.0 - 25 ng/mL with r^2 values greater than 0.995. Intraday and inter-day standard deviations were all below 9.1%. The recoveries of triplicate tests in different concentrations were in the range of 85.3 - 118.5% with relative standard deviations of less than 12.45%. A quantification limit of 1.25 mg/g was achieved.

Key words: cosmetics, local anesthetics, UPLC/MS/MS