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ABSTRACT

Severe LPS contamination in drugs and food can cause health problems and occasionally mislead research conclusions.  To ensure
the quality of traditional Chinese medicinal herbs (TCMH), LPS contamination problem should be evaluated.  We here described a NF-
kB activity-based reporter assay to detect LPS contamination.  We first created a macrophage cell line with integrated reporter gene
consisting of NF-kB-responding sites upstream of the luciferase gene.  The presence of LPS leads to NF-kB activation, and thus
triggers downstream luciferase expression.  The specificity of LPS-derived luciferase activity was confirmed by adding the LPS
inhibitor, polymyxin B.  In our system, the level of LPS correlates well with luciferase activity.  The LPS activity is completely
inhibited by polymyxin B, and the limit of LPS detection is 1ng/mL.  We also utilized RT-PCR to demonstrate that LPS contamination
at the concentration of 1ng/mL was enough to induce expression of downstream inflammatory cytokines TNF-a and IL-6.  We further
applied the method to examine LPS contamination in TCMH.  Among the 35 herbal extracts we examined, about 20% of them
exhibited variable but detectable LPS contamination (higher than 1ng/mL).  The data indicate that LPS contamination in Chinese herbs
should be considered.  In addition, the ease and low-background feature of this assay suggest its potential application for systematic
detection of LPS contamination in Chinese herbs. 

Key words: LPS, endotoxin, NF-kB, herbs, cytokine, reporter assays

INTRODUCTION

Traditional Chinese medicinal herbs (TCMH) had been
well accepted for medical treatment and food supplements
for many centuries.  The quality control of TCMH is very
important.  In addition to evaluate authenticity of TCMH,
efficacy of major components, contamination of adulterated
chemicals and microbial contamination in TCMH should
also be considered.  Indeed, microbial contamination of
TCMH might occur during growth, collection, preservation
and drug manufacturing process.  Although microorganisms
themselves can be destroyed by prolonged heating, certain
heat-resistant toxic derivatives of microorganisms, such as
lipopolysaccharides (LPS; also known as endotoxin), might
still exist. 

LPS is a major and essential integral component of
outer membrane of Gram-negative bacteria.  LPS is an
efficient microbial stimulant of innate immune response. By
inducing the release of inflammatory cytokines, LPS
activates both innate and adaptive immune responses, but
excessive amount of cytokines by LPS induction can trigger
fatal septic shock and sepsis in some circumstances(1).
Patients suffering from sepsis exhibit systemic inflamma-
tion, followed by hypotension, multi-organ failure and
death.  TNF-a is regarded as a central mediator of the
pathophysiological changes associated with LPS.  However,

many cytokines such as IL-1 and IL-6 are also important
mediators of sepsis(2).  The molecular mechanism(s) by
which LPS initiate cytokine expression have recently been
delineated.  Macrophages play a pivotal role in LPS-
induced effects.  LPS first binds to lipopolysaccharide
binding protein (LBP) to form LPS-LBP, which subsequent-
ly form a complex with a membrane protein called CD14.
The LPS-LBP-CD14 complexes further interact with Toll-
like receptor 4 (Tlr4) on the cell surface of the
macrophages, which exclusively transduce the LPS signal
across the membrane(3,4).  Activation of Tlr4 initiates a
signaling pathway, leads to the activation of the transcrip-
tion factor NF-kB, and triggers production of pro-inflam-
matory cytokines (e.g. TNF-a, IL-1, IL-6)(5).

In our recent experiments using medicinal herbs or
herb-derived crude extracts, we found some of these herbal
extracts were LPS-contaminated, as determined by chro-
mogenic Limulus amebocyte lysate (LAL) assays.  The
LPS contamination in these herbs significantly interfered
with our results.  Indeed, several documents have revealed
that endotoxin contamination of samples can give false
results and mislead conclusions(6,7).  Since severe LPS con-
tamination can cause health problems and mislead research
conclusions, endotoxin contamination of TCMH should be
carefully scrutinized.  Currently, the most common method
to measure LPS is chromogenic LAL assay.  This assay is
quantitative and sensitive, but has some limitation for
analyzing herbal extracts (for details, please see discus-* Author for correspondence. Tel: 886-2-28267177; 
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sion).  For example, color derived from herbal extracts may
interfere with the spectrophotometric analysis of the assay. 

Based on the finding that activation of Tlr4 by LPS
could cause NF-kB activation in cultures(8), transfection-
based reporter assays have been applied to analyze LPS-
signaling pathways(9,10).  In these studies LPS-responsive
cells were created by transfection with a reporter gene,
which is capable of detecting NF-kB activity, in a Tlr4-
expressing cell type.  In this paper, we successfully adapted
this methodology to establish a NF-kB activity-based
reporter assay to detect LPS in TCMH.  We first created a
highly LPS-responsive macrophage cell line with stable
integration of the reporter plasmid, which contains NF-kB-
responsive element followed by luciferase gene.  The
presence of LPS therefore can be reflected by luciferase
activity.  To examine whether the luciferase activity is truly
resulted from LPS, we tested whether LPS-specific
inhibitor polymyxin B can abolish luciferase activity.  We
also applied the method to examine LPS contamination in
35 herbal extracts. 

MATERIALS AND METHODS

I. Reagents and Materials

Lipopolysaccharide (LPS; Escherichia coli serotype
0111:B4) and polymyxin B sulfate were purchased from
Sigma (St. Louis, USA).  Traditional Chinese herbs were
purchased from herbal stores in Taipei.  Twenty-six types of
raw materials include Achyranthes bidentata, Asparagus
cochinchinensis, Astragalus membranaceus, Angelica sinen-
sis, Bupleurum falcatum, Broussonetia papyrifera, Cornus
officinalis, Cistanche salsa, Dioscorea batatas, Davallia for-
mosana, Eleutherococcus senticosus, Ganoderma lucidum,
Glycyrrhiza uralensis, Lithospermum erythrorhizon, Leon-
urus heterophyllus, Ledebouriella seseloides, Ligusticum
chuanxiong, Ophiopogon japonicus, Poria cocos, Panax
ginseng, Paeonia lactiflora, Panax pseudoginseng,
Polystictus versicolor, Rehmannia glutionsa, Schisandra chi-
nensis and Scutellaria baicalensis. Three types of concen-
trated herbal extracts include Artemisia capillaries,
Bupleurum falcatum and Rubus chingii. Six types of partial-
ly purified fractions include Agaricus blazei, Antrodia cin-
namome, Cordyceps sinensis, Graptopetalum paraguayense,
Taraxacum mongolicum and Polystictus versicolor.

II. Preparation of Reagents or Herbal Extracts from Drugs
or Medicinal Herbs 

One gram of powdered herbs (raw materials, concen-
trated herbal extracts or partially purified fractions) were
re-suspended in 10 mL of sterile deionized water, stirred
overnight at 4˚C, and sterilized through 0.22 µm filter
(Millipore, Billerica, USA).  LPS (500 µg) was dissolved in
500 µL of PBS as stock solution (1mg/mL).  Ten mg of
polymyxin B sulfate was re-suspended in l mL of sterile

deionized water.  Both LPS and polymyxin B stock
solutions were sterilized by filtration.  Undetectable LPS
contamination in PBS or sterile deionized water was
confirmed by chromogenic LAL assays QCL-1000 (Bio
Whittaker, Walkersville, USA). 

III. Cells and Medium 

Murine macrophage-like cell line RAW 264.7 was
purchased from Food Industry Research and Development
Institute (Hsinchu, Taiwan).  DMEM media were purchased
from Biochrom KG (Berlin, Germany), and bovine calf
serum (BCS) was from HyClone (Logan, USA).
Antibiotics (penicillin and streptomycin) and sodium
pyruvate were purchased from Invitrogen (Carlsbad, USA).
RAW 264.7 cells were regularly cultured at 37˚C in 5%
CO2 incubator in DMEM supplemented with 10% heat-
inactivated BCS, 100 units/mL penicillin, 100 µg/mL strep-
tomycin, and 1 mM sodium pyruvate. 

IV. Creation of LPS-Responsive Cells with Stably
Integrated Reporter Gene

RAW 264.7 cells (6 ¥ 106) were seeded in 100-mm
plates the day before transfection.  Ten µg of reporter
plasmid pELAM1-Luc and 2 µg of marker plasmid pCI-
puro were co-transfected into cells using FuGENE 6
method according to manufacturer’s instructions (Roche
Inc., Basel, Switzerland).  The pELAM1-Luc consists of
NF-kB-containing region from ELAM1 (endothelial
leukocyte adhesion molecule I), followed by the reporter
gene firefly luciferase.  The plasmid pCI-puro directs
expression of the puromycin-resistant gene.  Forty-eight hr
after transfection, the medium was replaced with
puromycin-supplemented medium (4 µg /mL) and continu-
ally selected for the puromycin-resistant cell clones.  Three
batches of puromycin-resistant cells were collected and
screened for their responsiveness to LPS by luciferase
assays as described below. 

V. Luciferase Assays

LPS-responsive cells were seeded in MP-24 plates at
the density of 2 ¥ 105 cells per well.  After treatment with
LPS or drugs for 5 hr in 5% CO2 incubator at 37˚C, cells
were harvested and lysed in 100 µL of lysis reagent. Twenty
µL of cell lysate was then mixed with 100 µL of luciferin
(the substrate of luciferase) right before luminescence detec-
tion.  The luminescence, generated by luciferase activity, was
measured with AutoLumat LB953 (Berthold technologies,
Bad Wildbad, Germany).  All reagents for luciferase assays
were purchased from Promega (Madison, USA).

VI. Reverse Transcriptase-Polymerase Chain Reaction (RT-
PCR)

Total RNA was isolated from drug or herb-treated RAW
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264.7 cells using Trizol reagent (Invitrogen Inc., Carlsbad,
USA) according to the manufacturer’s instructions.  Total
RNA (0.1 or 1 µg) was reverse-transcribed and amplified
using Ready To GoTM (Amersham Biosciences, Uppsala,
Sweden).  The primer sequences are as follows: (1) mouse
IL-6: sense, GGCAGAGTCCTTCAGAGAGAGATACAG;
antisense, CCCAACATTCATATTGTCAG; (2) mouse TNF-
a: sense, AACTTCGGGGTGATCGGTCC; antisense,
CAAATCGGCTGACGGTGTGGG; (3) mouse GADPH:
sense, TGTGATGGGTGTGAACCACGAG; antisense,
TGCTGTTGAAGTCGCAG GAGAC.  Expected PCR prod-
ucts for IL-6, TNF-a and GADPH are 343, 284 and 471 base
pairs, respectively.  Thirty amplification cycles were per-
formed for TNF-a and GADPH (0.1 µg of total RNA; PCR:
94˚C for 1 min, 58˚C for 1 min and 72˚C for 1 min).  Thirty-
five cycles were performed for IL-6 (1 µg of total RNA;
same PCR condition as TNF-a).  PCR products were ana-
lyzed with 2% agarose gels stained with ethidium bromide.

VII. Statistical Analysis

Data are presented as mean values ± SEM.  Data were
analyzed by one-way ANOVA for multiple comparisons
using a commercially available statistical analysis program
(SPSS, Arlington, VA).  Values of p < 0.05 were considered
statistically significant.

RESULTS AND DISCUSSION

The procedure to establish LPS detection system is
outlined in Figure 1.  We first transfected the murine
macrophage RAW 264.7 (with endogenous Tlr4 receptor)

with pELAM1-Luc plasmid, which contains the NF-kB-
responsive region of ELAM-1 (endothelial leukocyte
adhesion molecule I) followed by the firefly luciferase
gene.  Transfected cultures were then subjected to
puromycin selection.  To screen for cells with integrated
reporter plasmid pELAM1-Luc, different batches of
puromycin-resistant cells were further tested for their
responses to LPS.  Following LPS treatment, NF-kB
proteins presumably will translocate into nucleus, bind to
NF-kB-binding sites on pELAM1-Luc DNA, and trigger
expression of luciferase gene. Namely, luciferase activity
corresponds to LPS-induced NF-kB activity.  After exoge-
nously adding luciferin to cell lysates, the luciferase-
luciferin reactions generate luminescence with high sensi-
tivity and can be easily measured.  Luciferase activity is
directly proportional to total luminescence.  Since there is
no luciferase homolog in mammalian cells, the luciferase
activity in mammalian cells is generally undetectable,
which gives rise to the low background signal in this assay.
The batches of cells exhibiting the highest luciferase
responses to LPS were chosen for subsequent experiments.
These cells are designated as RAW 264.7/Luc cells in the
subsequent paragraphs. 

The NF-kB response curve for different amount of
LPS is shown in Figure 2.  The LPS response is dosage-
dependent in luciferase assays; the luciferase activity
increases when LPS concentrations increase.  The limit of
detection is 1 ng/mL.  Figure 2 also demonstrates the LPS
response can be inhibited by polymyxin B, a known phar-
macological antagonist of LPS(11,12).  Effect of LPS at con-
centrations up to 300 ng/mL was completely abolished by
polymyxin B at a concentration of 10 µg/mL.  To determine
whether the LPS response detected in our assays correlated
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Figure 1. The protocol to establish LPS detection system. (A) Creation of LPS-responsive clones with integrated luciferase gene. (B) Detection
of LPS contamination by NF-kB-based luciferase assays.



with biological effects, we utilized RT-PCR techniques to
analyze the expression of downstream pro-inflammation
cytokines, such as TNF-a and IL-6.  As shown in Figure 3,
the presence of LPS at the concentration as low as 1 ng/mL
was enough to induce expression of TNF-a and IL-6.  An
approximate dosage-dependent expression profile was
observed.  Therefore, we have established a reporter assay
to detect LPS effects, and the LPS response detected by our
assay can reflect its biological effects, as shown by
cytokine expression. 

We further applied this assay, in the presence or absence
of polymyxin B, to detect LPS contamination in TCMH.  We
had examined a total of 35 types of aqueous extracts of
TCMH, including 26 raw materials, 3 concentrated extracts
and 6 partially purified fractions.  Herbal extract (1 mg/mL)
or partially purified fraction (0.3 mg/mL) was assayed in the
absence or presence of polymyxin B (10 µg/mL).  Among
them, water extracts from 5 raw materials, 1 concentrated
extract and 2 partially purified extracts exhibited statistically
significant LPS activity as compared with the control sample
(vehicle only).  Selected representative examples are shown

in Figure 4.  The LPS-dependent activities of these extracts
were confirmed by their suppression by polymyxin B (10
µg/mL).  We did exclude C. sinensis, since it still exhibits
relatively high luciferase activity after polymyxin B treat-
ment.  To determine whether C. sinensis extract contains
excessive LPS which cannot be completely neutralized by
polymyxin B (10 µg/mL), we treated the C. sinensis extract
with higher amount of polymyxin B (20 µg/mL).  The
luciferase activity of C. sinensis -treated cells by polymyxin
B treatment at both concentrations showed no significant dif-
ference (data not shown), suggesting there exists LPS-inde-
pendent luciferase activity in C. sinensis.  The LPS contami-
nation of herbal extracts described in Figure 4 were con-
firmed by LAL assays (data not shown). 

Although there is currently few publications discussing
the LPS contamination problems in TCMH, it is worth-
mentioning that LPS contamination may occur during pro-
cessing, extraction and storage of TCMH.  Therefore,
inspection of LPS contamination in TCMH is necessary.
Indeed, among our random surveys on the 35 herbal
extracts derived from raw materials, concentrated herbal
extracts and partially purified fractions, about 20% of them
showed statistically significant LPS contamination above
the concentration able to induce pro-inflammatory cytokine
production.  LPS contamination in these herbal extracts was
confirmed by LAL assays.  These results indicate that LPS
contamination in TCMH is an unnegligible issue.  

LPS structure contains both hydrophobic lipid A and
polysaccharide region.  LPS pharmacological antagonist
polymyxin B, a cationic cyclic decapeptide isolated from
Bacillus polymyxa, has been widely demonstrated to specif-
ically neutralize the effect of LPS and  exclude the possible
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Figure 2. LPS specifically induces NF-kB activation in a dose-
dependent manner.  The RAW 264.7/Luc cells were treated with
increasing amount of LPS or premixed LPS-polymyxin B for 5 hr.
Data shown are the mean and SEM of three independent experiments,
and are presented as fold increase over control cells (vehicle only).
“*” represents p < 0.05 as compared with control (vehicle).
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Figure 4. Detection of LPS contamination in various types of herbal
extracts.  The RAW 264.7/Luc cells were treated with LPS or herbal
extracts for 5 hr, in the presence or absence of ploymyxin B. Data
shown are the mean and SEM of three independent experiments, and
are presented as fold increase over control cells (vehicle only). “*”
represents p < 0.05 as compared with control (vehicle). “#” indicates
p < 0.05 as compared with control (vehicle plus polymyxin B). B.f:
Bupleurum falcatum; R.c: Rubus chingii; R.g: Rehmannia glutionsa;
G.u: Glycyrrhiza uralensis; B.p: Broussonetia papyrifera; P.g: Panax
ginseng; C.s: Cordyceps sinensis. C.E.: concentrated extract; W.E.:
water extract; P.P.E.: partially purified fraction.
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Figure 3. Induction of pro-inflammatory cytokine expression by
increasing concentrations of LPS.  Data shown are electrophoretic
analysis of RT-PCR products for IL-6, TNF-a and internal control
GAPDH.  The expected sizes are 343 base pairs for IL-6, 284 base
pairs for TNF-a and 471 base pairs for GADPH, respectively. 



LPS contamination in the samples(6,7,13,14).  The neutraliz-
ing effect results from direct binding of the polycationic
region of polymyxin B to the anionic lipid A portion of
LPS(12).  It is possible that some components in TCMH
may possess LPS-related structures and react with
polymyxin B, leading to false negative results in our assays.
However, the specificity problem may occur for all types of
LPS detection methods.  Other LPS inhibitors, such as anti-
LPS antibody, can be added in our assays to further exclude
this possibility(15).  On the other hand, there might be
microbial LPS-related factors contaminated in TCMH,
which cannot be neutralized by polymyxin B, thus giving
false positive scores in our assays.  For example, bacterial
LPS-associated lipoproteins are possible candidates(16,17).
The activity of these lipoproteins was not affected by
adding polymyxin B directly to the culture medium.
However, activity of these lipoproteins can be removed by
passing samples through polymyxin B agarose column or
by prolonged heating(7). 

The most common method to measure LPS in a
regular laboratory is end-point chromogenic LAL assay.
Here we present an alternative method to measure LPS con-
tamination.  Comparison between our reporter-based assays
and classical chromogenic LAL assays is described in Table
1.  The reporter-based assay is less sensitive and quantita-
tive than LAL assays.  However, the reporter-based assay is
less labor-intensive, with potential application for high-
throughput LPS detection.  In addition, the reporter assays
directly provides information regarding NF-kB bioactivity.
Therefore, our reporter assay will provide a good comple-

ment for LAL assay, and can be generally applied to rapidly
monitor the LPS contamination in TCMH.  Chemical
analysis by HPLC or GC-MS has also been reported to
measure LPS contamination(18,19).  The LPS constituents,
such as 3-hydroxy-lauric acid or 3-hydroxy fatty acids,
served as marker substances for these methods.  Chemical
methods are quantitative but less sensitive in certain cir-
cumstances(19,20).  Furthermore, LPS derivatives detected
by these methods cannot directly reflect the potential LPS-
related bioactivity in the samples.  Considering the highly
complicated constituents of most crude herbal extracts,
detection of LPS contamination in TCMH using chemical
analysis may be more technically demanding.   
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