ABSORB Bioresorbable Vascular Scaffold System

- The 4th Revolution in Interventional Cardiology

Peter Staehr, MD

Abbott Vascular

17th Asian Harmonization Working Party Annual Conference 2-6 Nov 2012, Taipei

©2012 Abbott. All rights reserved.

Presentation Outline

- Introduction and History of Interventional Cardiology
- The 4th revolution Absorb Bioresorbable Vascular Scaffold System
 - The Clinical Need for a Bioresorbable Vascular Scaffold
 - Design Goals of a Bioresorbable Vascular Scaffold
 - Device Design and Technology
 - ABSORB Clinical Program and Studies
 - Summary

Introduction and History of Interventional Cardiology

Coronary Artery Disease (CAD) and Chest Pain: Chronic Angina, Unstable Angina or Acute MI

©2012 Abbott. All rights reserved.

What a myocardial infarction looks like in the heart ...

Healed posterior infarction with overlying thrombus (Back)

©2012 Abbott. All rights reserved.

CAD is the number one leading cause of mortality worldwide for patients 60 years and older

Deaths in patients aged >60 years globally (2002)¹

1. World Health Organization. Deaths from coronary heart disease. 2004. Available at: <u>http://www.who.int/cardiovascular_diseases/en/cvd_atlas_14_deathHD.pdf</u>. Accessed: Mar 2012. CAD=coronary artery disease; COPD=chronic obstructive pulmonary disease.

©2012 Abbott. All rights reserved.

6

Gold standard to diagnose CAD: Coronary angiography

©2012 Abbott. All rights reserved.

Left Coronary Artery with Atherosclerotic Stenosis

©2012 Abbott. All rights reserved.

Natural Progression of Coronary Artery Disease

Interventional Cardiology – The beginning

©2012 Abbott. All rights reserved.

Restenosis after Balloon Angioplasty (PTCA)

11

Interventional Cardiology – The 2nd revolution

©2012 Abbott. All rights reserved.

Restenosis after Stenting

Interventional Cardiology entering the 3rd revolution

1977

1. Balloon (PTCA): Andreas Gruntzig performs the first PTCA in Zurich, Switzerland

1988

2. Bare Metal Stent (BMS):

Julio Palmaz and Richard Schatz develop a stainless steel stent for coronary applications

2002 - 2003

3. Drug-eluting stents (DES): introduced to the European and U.S. markets

Interventional Cardiology entering the 4th revolution

1977 2002 - 2003 2011 1. Balloon (PTCA): 4. Absorb 3. Drug-eluting Andreas Gruntzig performs **Bioresorbable** stents (DES): the first PTCA in Zurich, 1988 Vascular Scaffold introduced to the Switzerland (BVS) European and U.S. 2. Bare Metal Stent (BMS): markets Julio Palmaz and Richard Schatz develop a stainless steel stent for coronary applications

©2012 Abbott. All rights reserved.

15

Absorb Bioresorbable Vascular Scaffold (BVS) – The 4th Revolution

The Clinical Need for a Bioresorbable Vascular Scaffold

©2012 Abbott. All rights reserved.

'Caged' (Stented) Vessel

©2012 Abbott. All rights reserved.

Potential of a Fully Bioresorbable Vascular Scaffold

Since struts disappear, issues related to very late persistent strut malapposition and chronically uncovered struts become irrelevant

The Clinical Need for a Bioresorbable Vascular Scaffold

Absorb Bioresorbable Vascular Scaffold (BVS)

Design Goals of a Bioresorbable Vascular Scaffold

What is Required of a Fully Bioresorbable Scaffold ???

Forrester JS, et al., *J. Am. Coll. Cardiol.* 1991; **17**: 758. *Small platinum markers at scaffold edges remain for fluoroscopic landmarking.

©2012 Abbott. All rights reserved.

Potential for Mechanical Conditioning

Mechanical conditioning may lead to improved cellular organization and vascular function

Absorb Bioresorbable Vascular Scaffold (BVS)

Device Design and Technology

©2012 Abbott. All rights reserved.

Abbott Vascular Everolimus-Eluting Bioresorbable Vascular Scaffold Components

Bioresorbable Polymer

Everolimus/PDLLA Matrix Coating

- Amorphous (non-crystalline)
- 1:1 ratio of Everolimus/PDLLA matrix
- Conformal coating, 2-4 µm thick
- **Controlled drug release**

- **Provides device structure**
- **Processed for required radial strength**

Absorb Bioresorbable Vascular Scaffold: Three Phases of Functionality

Vascular Reparative Therapy (VRT)

*Small platinum markers at scaffold edges remain for fluoroscopic landmarking.

©2012 Abbott. All rights reserved.

SE2928803 Rev. K

26

Absorb Vessel Support Over Time

Absorb appears to maintain adequate support for at least as long as is needed

Devices subjected to simulated physiologic environment (fatigue testing). Tests performed at and data on file at Abbott Vascular.

*Agrawal, CM, et.al. Biomaterials. 1992; 13: 176-182. ©2012 Abbott.

Absorb Conformability

Absorb provides better conformability compared to metallic platforms

Polylactide Degradation vs. Radial Support

Illustration is artist's rendition. Data on file at Abbott Vascular.

©2012 Abbott. All rights reserved.

The Absorb BVS Scaffold is Replaced by Functional Cellular Matrix

Based on preclinical histology evidence. Data on file at Abbott Vascular.

©2012 Abbott. All rights reserved.

Porcine Coronary Artery Safety Study Demonstrates Biocompatibility

Representative Photomicrographs, Hematoxylin and Eosin, 2x objective

Tests performed by Abbott Vascular. Data and images on file at Abbott Vascular.

©2012 Abbott. All rights reserved.

The final golden tube – visualized by OCT (Optical Coherence Tomography)

After implantation

After resorption

Images courtesy of Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands, ABSORB A 5 yr

©2012 Abbott. All rights reserved.

Absorb Bioresorbable Vascular Scaffold (BVS)

ABSORB Clinical Program and Studies

©2012 Abbott. All rights reserved.

Absorb: A Revolutionary Therapy Building Evidence

Introduction ABSORB Cohort A

Study Objective	First In Man, Single Arm – safety/performance
Endpoints	Typical PCI clinical and imaging endpoints
Treatment	Single, de novo native coronary lesion in a vessel with a reference vessel diameter of 3.0 mm
Device Sizes	3.0 x 12 mm scaffolds (3.0 x 18 mm scaffolds available after enrolment start and used in 2 pts)

ABSORB Cohort A Excellent Long-Term Data Out to 5 Years

• ABSORB Cohort A Clinical Results at Each Phase: Intent to Treat

	RESTOR	RESTORATION			
Hierarchical	6 Months 30 Patients	1 year 29 Patients**	2 Year 29 Patients**	5 Year 29 Patients**	
Ischemia Driven MACE***	1 (3.3%)*	1 (3.4%)*	1 (3.4%)*	1 (3.4%)*	
Cardiac Death	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
МІ	1 (3.3%)*	1 (3.4%)*	1 (3.4%)*	1 (3.4%)*	
Q-Wave MI	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Non Q-Wave MI	1 (3.3%)*	1 (3.4%)*	1 (3.4%)*	1 (3.4%)*	
Ischemia Driven TLR	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
by PCI	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.%)	
by CABG	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.%)	

No scaffold thrombosis by ARC or Protocol

* Same patient – this patient also underwent a TLR, not qualified as ID-TLR (DS = 42%)

** One patient withdrew consent and missed the 9, 12, 18 month and 2, 3, and 4 year visits; two patients died from a non-cardiac causes, one at 706 days and one at 888 days post procedure *** MACE – Composite endpoint comprised of cardiac death, myocardial infarction (MI) and ischemia-driven target lesion revascularization (TLR) by PCI or CABG

36

ABSORB Cohort A OCT Images – Baseline, 6 months and 2 years

Serruys, PW., ESC 2008.

©2012 Abbott. All rights reserved.

37

ABSORB Cohort A Temporal Lumen Dimensional Changes, Per Treatment

- Late lumen loss at 6 months mainly due to reduction in scaffold area
- Very late lumen enlargement noted from 6 months to 2 years

*Adapted from Serruys, PW, ACC 2009.

©2012 Abbott. All rights reserved.

38

BVS Device Optimization Objectives

Unchanged:

Material, coating and backbone Strut thickness Drug release profile

Photos taken by and on file at Abbott Vascular.

Introduction ABSORB Cohort B

ABSORB Cohort B Group 1&2 Clinical Results - Intent to treat

	30 Days	6 Months 1 Year		2 Years	
Non -Hierarchical	n = 101	n = 101	n = 101	n = 100*	
Cardiac Death %	0	0	0	0	
Myocardial Infarction % (n)	2.0 (2)	3.0 (3)	3.0 (3)	3.0 (3)	
Q-wave MI	0	0	0	0	
Non Q -wave MI	2.0 (2)	3.0 (3)	3.0 (3)	3.0 (3)	
Ischemia driven TLR % (n)	0	2.0 (2)	4.0 (4)	6.0 (6)	
CABG	0	0	0	0	
PCI	0	2.0 (2)	4.0 (4)	6.0 (6)	
Hierarchical MACE % (n)	2.0 (2)	5.0 (5)	6.9 (7)	9.0 (9)	

No scaffold thrombosis by ARC or Protocol out to 2 – Year only 2 additional TLR events between 1 year and 2 year

D. Dudek, ACC 2012 / *One patient missed the 2 year FUP

ABSORB Cohort B Clinical Results - MACE

Similar Rates of MACE Compared to Historical XIENCE Data Intent to Treat (ITT) Analysis; Interim Snapshot MACE C-Death, MI, ID-TLR) (%) 10.0 8.9% $= \Delta = 0.4\%$ 8 8.5% 6 — Absorb BVS (n=101) 4 2 **XIENCE V*** (n=227) 0 12 6 18 24 0 Time Post Index Procedure (Months) 758-day HR; 1.06 [0.48, 2.34]; P=0.8856 *3.0 x 18 mm subgroup, SPIRIT I+SPIRIT II+SPIRIT III RCT.

ABSORB Cohort B Temporal Lumen Dimensional Changes

Very late lumen enlargement noted from 6 months to 2 years

©2012 Abbott. All rights reserved.

ABSORB Vasomotor Function Testing: Restoration of Vasomotion

1. Adapted from Serruys, PW. ACC 2011 / 2. Adapted from Serruys, PW. ACC 2011 / 3. Adapted from Serruys, PW, et al. Lancet 2009; 373: 897-910.

ABSORB EXTEND Non-Randomized, Single-Arm, Continued Access Trial

ABSORB EXTEND Planned Clinical Sites

Expansion in clinical sites, worldwide

©2012 Abbott. All rights reserved.

ABSORB Extend Clinical Results - Intent to treat; Interim Snapshot

Non-Hierarchical	30 Days* n = 451	6 Months* n = 269
Cardiac Death (%)	0 (0.0)	1 (0.4)**
Myocardial Infarction n (%)	10 (2.2)	7(2.6)
Q-wave MI	3 (0.7)	3 (1.1)
Non Q-wave MI	7(1.6)	4 (1.5)
lschemia Driven TLR n (%)	1(0.2)	1 (0.4)
PCI	1(0.2)	1 (0.4)
CABG	0	0
Hierarchical MACE n (%)	10 (2.2)	8 (3.0)

*Reflects an interim snapshot with only cleaned data as of the cut-off date of Jan. 11, **A non-BVS was implanted in the target lesion 2012 MACE: cardiac death, MI, ischemia-driven TLR

RJ van Geuns, PCR Rotterdam 2012

©2012 Abbott. All rights reserved.

47

ABSORB II RCT

* Non-German sites only.

** Sizes to be introduced into the trial once available.

ABSORB III US Approval Trial

~2000 subjects (1267 Absorb, 733 XIENCE) US and Australian sites. Follow-up out to 5 years								
Clinical follow-up	- E							
Follow-Up (Months)	1	6	12	18	24	36	48	60
PRO follow-up IVUS/OCT/Vasomotion fol up (N~200 US subjects)	low-							
Study Objective	Seek US approval of Absorb BVS							
Primary Endpoint	Clinically indicated target lesion failure at 1-year (composite of cardiac death, target vessel MI or clinically indicated TLR)							
Treatment	Up to two <i>de novo</i> lesions in different epicardial vessels. No planned overlap allowed							
Device Sizes	Scaffold diamet	ers: 2.5, 3 s: 12, 18, 2	3.0, 3.5 mn 28 mm	n				

©2012 Abbott. All rights reserved.

49

Summary

Current clinical data for the Absorb BVS suggest three phases of functionality:

- 1. **Revascularization** with comparable safety and efficacy outcomes to best in class DES (drug eluting stent)
 - No ST in ABSORB Cohort A (5 year follow up)¹ and Cohort B (2 year follow up)³;
 0.4% ST at 6 months in ABSORB EXTEND⁴
 - Comparable MACE rates (3.4% at 5 years (Cohort A)¹, 9.0% at 2 years (Cohort B)³, and 2.9% at 6 months Extend⁴)
- 2. Restoration : First signs by showing
 - Possible restoration of vasomotion function (19/33 patients had increasing MLD post Acetylcholine – Cohort B)²
 - Possible late lumen gain between 6 and 24 months (Cohort B)¹
- *3. Resorption* of Absorb has been shown on OCT, resulting in the final "golden tube"

¹Serruys, PW., TCT 2011; ² J. Ormiston, TCT 2011; ³ D. Dudek, ACC 2012; ⁴ RJ van Geuns, EuroPCR BVS focus Rotterdam 2012; * Images courtesy of Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands, ABSORB A 5 yr

50

Thank you !

Questions?

©2012 Abbott. All rights reserved.