細胞產品的品質管控、放行規格及 相關法規介紹

李一麟 審查員

基礎醫學組 **▶** 財團法人醫藥品查驗中心 Feb 16, 2009

Disclaimer

- Center for Drug Evaluation (CDE) is a not-for-profit, nongovernmental organization commissioned by the Department of Health to evaluation dossiers of clinical trials and products registration. CDE is not a licensure agency.
- The views expressed in this presentation are those of the speaker and do not necessarily reflect those of CDE.

93年-97年度人體試驗案件			
Product	Clinical indication	Manufacturer	
Autologous natural killer cells	Late stage lung cancer and hepatocellular carcinoma	Biotech company	
Autologous bone marrow MN cells	Ischemic end-stage coronary artery disease	Hospital laboratory	
Autologous tumor lysate-pulsed dendrtic cells	Malignant glioma	Hospital laboratory	
Autologous oral mucosal epithelium cultured on allogeneic amniotic membrane	Ocular surface disease	Hospital laboratory	
Allogeneic umbilical cord blood stem cells	Allogeneic umbilical cord blood stem cell transplantation	Hospital laboratory	
Autologous serum artificial tear	Ocular surface health and severe dry eye patients	Hospital laboratory	
Autologous anti-CD3 antibody-activated T lymphocytes	Advanced hepatocellular carcinoma	Hospital laboratory	
G-CSF mobilized autologous peripheral blood stem cells (CD34 ⁺)	Chronic stroke	Hospital laboratory	
Autologous bone marrow mesenchymal stem cells	Cerebral infarct	Hospital laboratory	
Autologous chondrocytes	Repair of cartilaginous defect of femoral condyles	Hospital laboratory	
Autologous melanocytes	Vitiligo	Research centre	

93年-97年度人體試驗案件 (cont.)			
Product	Clinical Indication	Manufacturer	
Autologous dendritic cells	WHO grades III and IV gliomas	Hospital laboratory	
Autologous CD34+ cells from peripheral blood	Autoimmune disease	Hospital laboratory	
Autologous bone marrow mononuclear cells	Peripheral arterial occlusion disease	Hospital laboratory	
Autologous cornea stem cells cultured on amniotic membrane	Unilateral corneal stem cell insufficiency	Hospital laboratory	
Autologous mesenchymal stem cells (derived from bone marrow) embedded in collagen	Production of cartilage-like tissue for repairing cartilage defect	Hospital laboratory	
Autologous melanoma cells transduced by viral vectors	Metastatic melanoma	Hospital laboratory	
Autologous natural killer cells	Hepatitis C virus related hepatocellular carcinoma (HCC)	Biotech company	
Autologous oral mucosal epithelial cells cultivated on amniotic membrane	Ocular surface disorders	Hospital laboratory	
Allogeneic umbilical cord derived mesenchymal stem cells (UC-derived MSC)	Transplantation of UC-derived MSC after allogeneic hematopoietic stem cell transplantation	Biotech company/ hospital laboratory	
Autologous umbilical cord blood	Cerebral palsy	Hospital laboratory	

分級管理

	歐盟	美國 FDA CBER
低風險	非工程化 (not engineered)	PHS ACT 361 最小程度處理 (minimally manipulated)
高風險	工程化	PHS ACT 351 非最小程度處理

Today's Topics

- Cellular Products Manufacturing & Quality Controls
 - So-called Chemistry, Manufacturing and Controls (CMC)
- Product Testing: Potency
- Product Characterization & Release Specifications

Cellular Products Manufacturing & Quality Controls

Principles

- Defined components
- Detailed manufacturing procedures
 - Consistency of production
- Product characterization
 - > Specifications
- Adventitious/microbiological agents testing
- Detection for extraneous materials
- Stability

CMC requirement

Defined components

- Cells
- Reagents
- Excipients
- Combination products

Defined components: Cells

- Autologus and/or allogeneic
- Cell source

e.g. bone marrow mononuclear cells

- Mobilization protocol e.g. GCSF-induced mobilization
- Collection method e.g. leukapheresis
- Donor eligibility

Defined components: Cells (cont.)

Donor eligibility:

• Autologous

➤研究單位必須設有檢驗傳染病原 (adventitious agents) 如愛滋病 (HIV) 和肝炎病毒 (hepatitis viruses) 之作業,可以不選擇這種受試者,或對這種特殊受試者事先作保護工作人員及環境之防患措施。

• Allogeneic

- Medical history screening e.g. TB, CJD
- > Testing e.g. HIV, HBV, HCV, Syphilis
- > HLA matching

Defined components: Reagents

- Reagents/materials/separation devices/media that are not intended to be present in the final product
 - Excipients (components in the final product) are not AMs
- USP<1043> Ancillary materials (AMs)
- Vendor qualification
 - > cGMP, audit/inspection record
 - > Quality control testing program
 - Documentation
 - e.g. grade, traceability or country of origin (animal- derived AMs)
 - QC, batch analytical results or COA

Risk classification of AMs Tier 1

- Low-risk, highly qualified therapeutic drug or biologic, medical device or implantable material
 - > Therapeutic grade
 - e.g. human serum albumin (HSA), insulin, cytokines
- Certificates of Analysis (COA)
- Assess removal from the final product

Risk classification of AMs Tier 2

- Low-risk, well-characterized materials with intended use as AMs, produced in compliance with GMPs
 - > For use in drugs, biologics or medical devices manufacture
 - e.g. growth factors, proteolytic enzymes, density gradient media
 - exclude most animal- derived materials
- COA
- Assess removal from the final product
- Qualified vendor

Risk classification of AMs Tier 3

- Moderate-risk materials not intended for use as AMs
 For *in vitro* diagnostic use or reagent grade materials
 e.g. growth factors, culture media, chemicals
- COA
- Assess removal from the final product
- Qualified vendor
- Confirm critical test results shown in COA
 - Develop internal specifications eventually

Risk classification of AMs Tier 4

- High-risk materials
 - > Toxins, most animal-derived materials
 - e.g. feeder cells, ascites-derived antibodies, cholera toxin, FBS
- COA
- Assess removal from the final product
- Qualified vendor
- Confirm critical test results shown in COA
 - Develop internal specifications eventually

AMs: Removal from the final product

- AMs are not intended to be part of the final product
- Consider AMs removal in early stages of product development
 - > By washing with calculated dilution factors
 - Maybe sufficient for early clinical trials
 - > Measurement of residual AMs
 - e.g. immunoassay for BSA
 - PCR for residual DNA from feeder cells
 - > AM clearance by process (validation)

Defined components: Excipients

- Components to be part of the final product e.g. HSA
- Amount/concentration in the final product
- In compliance with pharmacopoeial specifications
- Novel excipients
 - > Previous human experience?
 - Safety concerns?

Defined components: Combination products

- Device components e.g. polymeric scaffolds
- Drug components
 - Marketed in Taiwan?
 - Pharmacokinetics (PK)
 - > Pharmacodynamics (PD)

Detailed manufacturing procedures

- Preparation procedures
 - Cell collection/processing/culture conditions
 - Irradiation
 - Final harvest
- Process timing and intermediate storage
 - > Timing for each step
 - In-process testing
 - Cryopreservation, stability studies initiated
- Final formulation
 - > Excipients
 - Cell density

Product testing

- Microbiological testing
 - Bacterial and fungal testing
 - e.g. USP<71>
 - > Mycoplasma
 - e.g. PCR base methods
 - Viral testing (when cell lines are used)
- Identity
 - e.g. physical or chemical characteristics
 - visual examination/microscopic methods
 - immunological tests e.g. surface markers

Product testing (cont.)

- Purity
 - Endotoxin

<5 EU/kg body weight/hour (parenteral drugs)

<0.2 EU/kg body weight/hour (intrathecally-administered drugs)

- > Residual AMs
- Viability
 - > Acceptable viability >70%
 - > <70%, address safety concerns of dead cells and cell debris
- Potency
 - > Progressive assay design/implementation/validation

Product stability

- In-process stability testing
 - Stable during the period of cryopreservation
- Final product stability testing
 - Stable between the time of product formulation to administration

Definition of potency (ICH Q6B)

The measure of the biological activity using a suitably *quantitative* biological assay (also called potency assay or bioassay), based on the attribute of the product which is linked to the relevant biological properties.

Purpose

- A potency measurement is used to correlate with the product's clinical efficacy and hence can be used for lot release, stability protocols and/or comparability studies.
- Used to develop "in house" reference materials in the event that a universal standard or reference material is not available.

Challenges to Potency Assay	Examples:	
Development for CGT products:		
Inherent variability of starting materials	 Autologous and allogeneic donor variability 	
	 Cell line heterogeneity 	
	 Error-prone replicating viruses 	
Limited lot size and limited material for testing	 Single dose therapy using autologous cells suspended in a 	
	small volume	
Limited stability	 Viability of cellular products 	
Lack of appropriate reference standards	 Autologous cellular material 	
	 Novel gene therapy vectors 	
Multiple active ingredients	 Multiple cell lines combined in final product 	
	 Heterogeneous mixtures of peptide pulsed tumor and/or 	
	immune-modulatory cells	
	 Multiple vectors used in combination 	
The potential for interference or synergy between	 Multiple genes expressed by the same vector 	
active ingredients	 Multiple cell types in autologous/allogeneic cell 	
	preparations	
Complex mechanism of action(s)	 Multiple potential effector functions of cells 	
	 Multiple steps required for function such as infection, 	
	integration, and expression of a transgene	
	 Vectors containing multiple genes 	
In vivo fate of product	 Migration from site of administration 	
	 Cellular differentiation into the desired cell type 	
	 Viral or cellular replication 	
	 Viral vector infection, uncoating, and transgene expression 	

Potency tests for cellular and gene therapy (CGT) products, draft guidance, FDA, 2008

Potency methods

- Biological assays
 - Measurement in a "living biological system" e.g. *in vivo* animal studies, *in vitro* organs, tissues, cell cultures
- Non-biological analytical assays
 - A surrogate of biological activity
 e.g. quantitative flow cytometry, ELISA, enzymatic reactions
- Multiple assays (assay matrix)
 - Biological or analytical
 - Quantitative readout (e.g. unit of activity) or qualitative readout (e.g. pass/fail)

Example: Human haematopoietic stem cells

This monograph (Ph Eur 01/2008:2323) applies to haematopoietic stem cells that have not undergone expansion or genetic modification.....

Background

- Haematopoietic stem cells are recognised by their ability to reconstitute human haematopoiesis *in vivo*.
- They also have the capacity to differentiate into colonyforming cells (CFC).
- The membrane marker CD34 is commonly used or the successful isolation/purification of haematopoietic stem cells from crude preparations and as an indicator of haematopoietic stem cell content in routine quality control.

Example: Human haematopoietic stem cells (cont.)

CD34+ cell count (quantitatively analytical assay)

- For peripheral blood stem cells, CD34+ cell count is determined using a validated automated apparatus to analyse cells labelled with anti-CD34 antibodies.
- The method must be sensitive, accurate and reproducible.

Example: Human haematopoietic stem cells (cont.)

CFC assay (quality biological assay)

- Proliferative capacity is established by a suitable assay. The correlation between the dose of CD34 and the number of CFCs in a given situation (pathology, packaging, mobilisation) is determined.
- The CFC assay is carried out periodically; whenever a change that could affect the quality of CD34+ cells is made to the protocol for packaging or mobilisation.

Biological activity vs analytical assays: Establish a correlation

Accumulate knowledge regarding your product from the following:

- Relevant preclinical investigation
- Proof of concept studies
- Available historical experience
- Available reference materials and controls
- Extensive product characterization
- Early clinical studies

Clinical trial progress: A misconception

Phase III trial

Clinical trial progress: Establish a correlation

Aim

Analytical assays ↔ Biological activity ↔ Clinical efficacy

At clinical Phase I or II trials

- Define the biological activity to certain extent
- Assays possibly correlate with clinical efficacy e.g. viability, surface markers
- Multiple assays where appropriate to help establish the relevant biological activity of your product

Aim of most Phase I trials: Safety

At clinical Phase II or III trials

- Quantitative assay preferred (by the end of Phase II)
- Biological activity that can correlate with clinical efficacy
 - > Direct assay of the biological activity
 - e.g. cytotoxic activity of NK cells
 - > Assay(s) correlating with biological activity
 - e.g. surface marker analyses correlating with cell proliferative activity

At clinical Phase III trials (pivotal studies)

- A sufficient potency design and acceptance criteria to assure a well-characterized, consistently manufactured product is administered.
- Use well-characterized potency assay(s) with established acceptance criteria in stability protocols to establish expiry dating for licensure.

Product Characterization & Release Specifications

Characterization

- Determination of the following characteristics of a product
 - > Physicochemical properties
 - > Biological activity
 - Immunochemical properties
 - Purity and impurities
- Allow relevant specifications to be established

Specifications

• Tests

e.g. tests for safety, purity, potency and identity

Analytical methods e.g. USP<71>, LAL gel clot test

- Acceptance criteria
 - Numerical limits
 - e.g. <0.5 EU/ml
 - Ranges

e.g. pH 6.8-7.4; 85-90% CD34+ cells

> Others

e.g. gel like, pass/fail

Release specifications for a clinical Phase I trial Example 1

Release specification of the final cellular product-

Test	Method		Acc	eptar	ice criteria
Sterility	USP<71>		Neg	gative	
Mycoplasma	Mycoplasma test kit Negative				
Endotoxin	LAL gel clot test Negative				
cyte ratio	Morphology and	staining	\geq	%	
Total viable cell number	Trypan blue staining and				cells
	hemacytometer				ССПО ССПО
Viability	Trypan blue staining	and	>	%	
	hemacytometer				

Release specifications for a clinical Phase I trial

Example 2

Analytical method	Acceptance criteria
Appearance	
Visual examination	Gel-like appearance
Cell number	1 to 1.5 (× 10 ⁵) cells
Microbiological testing	
Bacterial and fungal testing	Negative
Mycoplasma testing	Negative
Identity Real-time reverse transcription/polymerase chain reaction for cell specific genes 免疫組織化學染色分析 細胞表面抗原測定	Detection of 1, 2 and 3 example genes 染色法檢測應為陽性 表面抗原1 (+), 表面抗原2 (-)
Impurities Endotoxin Residual antibiotics (HPLC) Residual hTGF (ELISA)	< XX EU/product < 1 ppm < 1 ppm

References

- 體細胞治療人體試驗申請與操作規範,衛生署,2003

 Scope: autologous, allogeneic and xenogeneic cell products
- Content and Review of Chemistry, Manufacturing and Control (CMC) Information for Human Somatic Cell Therapy Investigational New Drug Applications (INDs), FDA, Apr 2008
 Scope: autologous and allogeneic cell products
- Guideline on human cell-based medicinal products, EMEA, May 2008

Scope: autologous and allogeneic cell products

• Potency tests for cellular and gene therapy products, draft guidance, FDA, Oct 2008

References (cont.)

- ICH Q6B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products.
- ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology.
- ICH Q5E Comparability of Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process.

Thank you for your attention. illee@cde.org.tw