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Abstract

Magnoliae Officinalis Cortex (MOC), an herbal drug, contains polyphenolic lignans mainly magnolol (MN) and
honokiol (HK). Methotrexate (MTX), a critical drug for cancers and autoimmune deseases, is a substrate of multidrug
resistance-associated protein 2 (MRP2) and breast cancer resistance protein (BCRP). This study investigated the effect of
coadministration of MOC on the pharmacokinetics of MTX and relevant mechanisms. SpragueeDawley rats were orally
administered MTX alone and with single dose (2.0 and 4.0 g/kg) and repeated seven doses of MOC (2.0 g/kg thrice daily
for 2 days, the 7th dose given at 0.5 h before MTX). The serum concentrations of MTX were determined by a fluorescence
polarization immunoassay. The results showed that a single dose of MOC at 2.0 g/kg significantly increased the AUC0-t

and MRT of MTX by 352% and 308%, and a single dose at 4.0 g/kg significantly enhanced the AUC0-t and MRT by 362%
and 291%, respectively. Likewise, repeated seven doses of MOC at 2.0 g/kg significantly increased the AUC0-t and MRT
of MTX by 461% and 334%, respectively. Mechanism studies indicated that the function of MRP2 was significantly
inhibited by MN, HK and the serum metabolites of MOC (MOCM), whereas BCRP was not inhibited by MOCM. In
conclusion, coadministration of MOC markedly enhanced the systemic exposure and mean residence time of MTX
through inhibiting the MRP2-mediated excretion of MTX.

Keywords: Herb-drug interaction, Magnoliae Officinalis Cortex, Methotrexate, MRP2, Pharmacokinetics

1. Introduction

M agnoliae Officinalis Cortex (MOC), the dried
bark of Magnolia officinalis Rehder & E.H.

Wilson), is a widely prescribed herbal medicine in
Asia countries for thousand years. According to the
4th Taiwan Herbal Pharmacopeia, the indications of
MOC are for drying dampness and resolving
phlegm, directing qi downward and eliminating
fullness. The usual daily dose of MOC is 3.0e11.5 g.
Nowadays, MOC is often used for the treatments of
a variety of disorders, such as digestive disturbance,
mental diseases and allergic diseases [1e3]. The

major constituents of MOC are magnolol (MN) and
honokiol (HK), which are polyphenolic lignans
exhibiting various beneficial activities, such as anti-
inflammation [4], anti-spasmodic [5], anti-anxiety
[6,7] and anti-cancer effects [8]. Therefore, MOC and
its components are contained in many nutraceut-
icals available in recent markets [9,10].
Based on previous pharmacokinetic studies, the

conjugated metabolites of MN and HK are abun-
dant in the bloodstream after oral administrations of
MN, HK or MOC [10e12]. In recent decades, the
conjugated metabolites existing as anions in the
blood were known as substrates of multidrug
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resistance-associated proteins (MRPs) or breast
cancer resistance protein (BCRP) [13e15]. Besides,
our recent study verified that MN and HK were
substrates and inhibitors of BCRP [16]. Because
MRP2 and BCRP are efflux drug transporters
expressed at the apical membranes of multiple tis-
sues, including intestine, liver and kidney tubules
[17], the inhibitions of MRP2 and BCRP might result
in decreased excretion of their substrate drugs.
Methotrexate (MTX), a critical drug existing as

anions in blood, is also a substrate of MRPs and
BCRP like the conjugated metabolites [18e20]. MTX
is clinically prescribed for the treatments of cancers
[21,22] and autoimmune diseases, such as rheumatic
arthritis and psoriasis [23e25], but with narrow
therapeutic index. Nephrotoxicity and hepatoxicity
were the common side effects of MTX [24,26,27],
therefore, the serum concentration of MTX should be
monitored for reducing the risks of adverse events.
Moreover, patients treated with MTX often suffered
from serious drug interactions, such as MTX-
NSAIDs interactions, which were highly attributed to
the inhibition of MRPs and BCRP [28,29]. Kidney is
the major route for MTX elimination [30], thus any
modulation on the function of renal efflux trans-
porters like MRPs and BCRP would alter the elimi-
nation of MTX and its efficacy or toxicity. Based on
the above rationale, we hypothesized that the con-
jugated metabolites of MN and HK might compete
with MTX for the MRP2- or BCRP-mediated efflux
transports and decrease the renal excretion of MTX.
Therefore, this study aimed to investigate the effect
of coadministration of MOC on the pharmacoki-
netics of MTX and relevant mechanisms.

2. Materials and methods

2.1. Chemicals and reagents

MOC was obtained from a Chinese drugstore
(Taichung, Taiwan) and identified through visual
inspection and microscopic examination by Dr. Yu-
Chi Hou. A voucher specimen (CMU-P-1905-13)
was deposited in China Medical University. MN
and HK were purchased from Wako Pure Chemical
Industries, Ltd. (Osaka, Japan). MTX (25 mg/mL)
was supplied by Wyeth Pharma Gmbh (Wolf-
ratshausen, Germany). Mitoxantrone (MXR) was
obtained from Enzo Life Sciences, Inc. (Farm-
ingdale, NY, USA). Butylparaben was obtained from
Sigma (St. Louis, MO, USA). Dulbecco's Modified
Eagle Medium (DMEM), Hank's Buffered Salt So-
lution (HBSS) and 5-chloromethylfluorescein diac-
etate (CMFDA) were purchased from Invitrogen
(Grand Island, NY, USA). Acetonitrile and methyl

alcohol (MeOH) were supplied by Mallinckrodt
Baker, Inc. (Phillipsburg, NJ, USA). Milli-Q plus
water (Millipore, Bedford, MA, USA) was used for
all processes.

2.2. Preparation and characterization of MOC

The preparation of MOC was modified from our
previous study [31]. Briefly, crude drugs of MOC
(100 g) were immersed with 4000 mL of water. The
other procedures were the same as previous
described. Finally, the filtrate was concentrated to
make 200 mL to afford a concentration of 0.5 g/mL of
MOC decoction. Then, 500 mL of MOC was mixed
with 500 mL of butyl paraben solution (40 mg/mL in
MeOH as internal standard). After vortexed and
centrifuged, 20 mL of the supernatant was subjected
to HPLC analysis. The HPLC apparatus included
one pump (LC-10AT; Shimadzu, Japan), an UV de-
tector (SPD-10A; Shimadzu, Japan), an autosampler
(Series 200, PerkinElmer, USA), and a RP-C18 col-
umn (4.6 � 250 mm, 5 mm; Alltech Associates Inc.,
USA). The mobile phase was acetonitrile/0.1%
phosphoric acid (60:40) and run isocratically. The
detection wavelength was set at 290 nm and the flow
rate was 1.0 mL/min.

2.3. Animals and drug administration

Male SpragueeDawley rats (350e450 g) were pur-
chased from BioLASCO Taiwan Co., Ltd. (Yi-Lan,
Taiwan) and housed in a 12-h lightedark cycle, con-
stant temperature environment at the Animal Center
of ChinaMedical University (Taichung, Taiwan) prior
to study. The studywas conducted in accordance with
the recommendations by “The Guidebook for the
Care and Use of Laboratory Animals” published by
the Chinese Society for the Laboratory Animal Sci-
ence, Taiwan,ROC.Thisprotocol (CMUIACUC-2019-
127-2) was approved by the Institutional Animal Care
and Use Committee (IACUC), China Medical Uni-
versity (Taichung, Taiwan).
Rats were randomly divided into four groups and

a parallel study was conducted. Before experiment,
rats were fasted overnight, but drinking water was
allowed ad libitum. Food was supplied 3 h after drug
administration. The 1st group (n ¼ 6) was orally
given MTX (5.0 mg/kg) alone with an equal volume
of water as MOC. The 2nd groups (n ¼ 6) and 3rd
groups (n ¼ 6) were concomitantly administered
with 2.0 g/kg and 4.0 g/kg of MOC at 0.5 h before
MTX (5.0 mg/kg), respectively. The dose selection
was based on the daily dosage of MOC in the 4th
Taiwan Herbal Pharmacopeia [32] and the USFDA
2005 guideline for “Conversion of Animal Doses to
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Human Equivalent Doses” [33]. The 4th group
(n ¼ 5) was orally administered 2.0 g/kg of MOC
thrice daily for two days and the 7th dose was given
at 0.5 h before MTX.

2.4. Blood collection and the determination of MTX
in serum

The blood samples (0.5 mL) were collected via the
tail vein at 0.25, 0.5, 1, 2, 4, 8, 12, 24, 36 and 48 h.
Then, the serum concentration of MTX was
measured by a fluorescence polarization immuno-
assay (Abbott, Abbott Park, IL, USA). All the pro-
cedures, calibration curve and validation were
conducted according to the manufacturer's
instructions.

2.5. Cell line, culture conditions and MTT assay for
cell viability

MadineDarby canine kidney type II wild-type
(WT) cells and two transfected cells with over-
expression of MRP2 (MDCKII-MRP2) and BCRP
(MDCKII-BCRP) were all kindly obtained from Pro-
fessor Dr. Piet Borst (Netherlands Cancer Institute,
Amsterdam, Netherlands) [34]. Cells were grown in
DMEM medium supplemented with 10% of fetal
bovine serum (Biological Industries Inc., Kibbutz,
Beit Haemek, Israel), 1% of penicillin-streptomycin-
glutamine (Invitrogen, Grand Island, NY, USA) at
37 �C in a humidified incubator containing 5% CO2

[31,34]. Furthermore, the effects of tested agents on
the viability of MDCKII-WT, MDCKII-MRP2 and
MDCKII-BCRP cells were evaluated by MTT assay
[35] with minor modification [31].

2.6. Preparation of the serum metabolites of MOC
(MOCM)

Three rats were orally administered two doses of
MOC (2.0 g/kg) with an interval of 30 min, then the
blood was collected at 30 min after the second dose.
In parallel, the blood was collected from another
three rats untreated with MOC to prepare the
serum as blank control. Other procedures were the
same as our previous study [31].

2.7. Effects of MOC, MN, HK and MOCM on
MRP2 activity

The effects of MOC, MN, HK and MOCM on the
function of MRP2 were evaluated by using MDCKII-
WT and MDCKII-MRP2 cells [31,36], respectively,
and CMFDA (1 mM) was used as a fluorescent probe
for evaluating the activity of MRP2. MK 571 (Enzo

Life Sciences, Inc, Farmingdale, NY, USA) was used
as a positive control of MRP2. Briefly, MDCKII-WT
cells (1 � 105 cells/well) were incubated with the
tested agents at 37 �C for 30 min. The fluorescence
was set at 485/528 nm (excitation/emission). The
relative intracellular accumulation of glutathione-
methylfluorescein (GSMF, a metabolite of CMFDA),
a fluorescent substrate of MRP2, was calculated by
comparing with that of control. Besides, before ex-
periments, MOCM sample was re-dissolved in 1 mL
of water to afford a solution with 10-fold serum
concentration and filtered with 0.2-mm pore size
filter (Sartorius Stedim Biotech Gmbh, Gottingen,
Germany). Furthermore, 10-fold serum concentra-
tion of MOCM was diluted with HBSS to afford a
series solution of 1-fold and 1/2-fold serum con-
centration. Then, MDCKII-MRP2 cell suspension
(5 � 105 cells/tube) was co-incubated with test
agents and CMFDA at 37 �C for 30 min. The intra-
cellular accumulation of GSMF was monitored by a
FACScan flow cytometer (Becton Dickinson Immu-
nocytometry Systems, San Jose, CA) equipped with
a standard argon laser. All data of MOCM were
obtained after correction with the correspondent
concentration of blank serum control. The transport
studies were performed in triplicates.

2.8. Effects of MOC and MOCM on BCRP activity

The effect of MOC and MOCM on the function of
BCRP was evaluated by using MDCKII-BCRP cells
[16,31]. MXR (5 mM) was used as a probe for evalu-
ating the activity of BCRP and Ko143 (Enzo Life Sci-
ences, Inc, Farmingdale, NY, USA) was used as a
positive control of BCRP. Briefly, MDCKII-BCRP
cells (1 � 105 cells/well) were incubated with the
tested agents at 37 �C for 2 h. After the cells were
collected and lysed, the fluorescence of MXR was
monitored at 607/684 nm (excitation/emission). On
other hand, MDCKII-BCRP cell suspension
(5 � 105 cells/tube) was pre-incubated with tested
agents at 37 �C for 15 min. MXRwas co-incubated for
30 min. The intracellular accumulation of MXR was
determined by a FACScan flow cytometer equipped
with a standard HeNe laser. All data of MOCMwere
obtained after correction with the correspondent
concentration of blank serum control. The transport
studies were performed in triplicates.

2.9. Data analysis

Pharmacokinetic parameters were calculated by
using noncompartment model with the aid of
Phoenix WinNonlin (version 8.1, Pharsight Corp.,
NC, USA). The differences of pharmacokinetic
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parameters of rats among four treatments were
analyzed by one-way ANOVA with Scheffe test, and
unpaired Student's t-test was used for cell studies,
taking P < 0.05 as significant level.

3. Results

3.1. Characterization of MOC

The HPLC chromatogram of MOC is shown in
Fig. 1. The peaks of MN and HK were satisfactorily
resolved within 18 min by an isocratic elution. The
calibration curves (2.0e250.0 mg/mL) of MN and HK
both showed good linearities with a correlation co-
efficient of 0.999. The coefficients of variation of
intraday and interday analysis were less than 9%
and the relative errors were below 16%. The re-
coveries were 94e108% and 94e100% for MN and
HK, respectively. The quantitation results showed
that MOC (0.5 g/mL) contained 0.9 and 0.5 mmol/mL
of MN and HK, respectively. Accordingly, a dose of
2.0 g/kg of MOC contained 3.6 and 2.0 mmol/kg of
MN and HK, and a dose of 4.0 g/kg of MOC con-
tained 7.2 and 4.0 mmol/kg of MN and HK,
respectively.

3.2. Effect of coadministration of MOC on MTX
pharmacokinetics in rats

The serum MTX profiles after oral dosing of MTX
alone and coadministrations with single dose (2.0 g/
kg and 4.0 g/kg) and the 7th dose (2.0 g/kg) of MOC

are shown in Fig. 2(A). The pharmacokinetic param-
eters of MTX after four treatments are listed in Table
1. After coadministration with single dose of 2.0 g/kg
of MOC, the AUC0-t and MRT of MTX was signifi-
cantly increased by 352% and 308%, respectively.
While 4.0 g/kg of MOC was coadministered, the
AUC0-t and MRT of MTX was significantly increased
by 362% and 291%, respectively. After coadminis-
tration of the 7th dose of MOC at 2.0 g/kg, the AUC0-t

andMRTofMTXwas significantly increased by 461%
and 334%, respectively.

3.3. Cell viability assay

MTT assay indicated that 150 mM of MN and HK
in MDCKII-WT cells, 100 mM of MN and HK in
MDCKII-BCRP cells and 1-fold serum concentration
of MOCM in both MDCKII-MRP2 and MDCKII-
BCRP cells all exhibited no toxic effects on the cell
viability (data not shown).

3.4. Effects of MOC, MN, HK and MOCM on
MRP2 activity

The effects of MOC, MN and HK on the intra-
cellular accumulation of GSMF in MDCKII-WT cells
are shown in Fig. 3(A) and (B). The results revealed
that MOC at 0.2, 1 and 5 mg/mL did not influence
the intracellular accumulation of GSMF. As a posi-
tive control of MRP2 inhibitor, MK571 significantly
increased the accumulation of GSMF by 203%. MN

Fig. 1. HPLC chromatogram of MN, HK and butyl paraben (internal standard) in MOC.
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at 50 mM significantly increased the accumulation of
GSMF by 137%; HK at 25 and 50 mM significantly
increased the accumulation of GSMF by 34% and
75%, respectively. As a positive control of MRP2
inhibitor, MK 571 increased the accumulation of
GSMF by 331%.
The effect of MOCM on the accumulation of

GSMF in MDCKII-MRP2 cells is shown in Fig. 3(C).
The results indicated that at 1-fold serum concen-
tration, MOCM significantly increased the accu-
mulation of GSMF by 17%. As a positive control of
MRP2 inhibitor, MK 571 increased the accumulation
of GSMF by 72%.

3.5. Effects of MOC and MOCM on BCRP activity

The effects of MOC and MOCM on the intracel-
lular accumulation of MXR in MDCKII-BCRP cells

are shown in Fig. 4. The results revealed that MOC
at 0.2, 1 and 5 mg/mL significantly decreased the
accumulation of MXR by 6%, 13% and 29%,
respectively. As a positive control of BCRP inhibitor,
Ko143 significantly increased by 55%.
On other hand, MOCM did not influence the

intracellular accumulation of MXR. As a positive
control of BCRP inhibitor, Ko143 significantly
increased the accumulation of MXR by 60%.

4. Discussion

The determination of MN and HK concentrations
in MOC by HPLC showed that the content of MN
was higher than HK, which was consistent with
previous studies [37,38]. The results of MOC-MTX
interaction study in rats revealed that single-dose
MOC either at 2.0 or 4.0 g/kg markedly increased

Fig. 2. (A): Mean (± S.E.) serum concentrationetime profiles of MTX after oral doing of MTX alone (5.0 mg/kg) (B, n ¼ 6) and coadministration
with single dose of 2.0 g/kg (-, n ¼ 6), 4.0 g/kg (;, n ¼ 6) and the 7th dose of 2.0 g/kg (:, n ¼ 5) of MOC and (B): the semi-log diagram of (A).

Table 1. Comparison of pharmacokinetic parameters of MTX after oral administration of 5.0 mg/kg of MTX alone (n ¼ 6) and coadministered with
2.0 g/kg (n ¼ 6), 4.0 g/kg (n ¼ 6) and seven doses of 2.0 g/kg (n ¼ 5) of MOC.

Parameters Treatment

MTX + water MTX + MOC (2.0 g/kg) MTX + MOC (4.0 g/kg) MTX + MOC (2.0 g/kg, 7th dose)

Cmax 0.2 ± 0.03 0.3 ± 0.01 0.2 ± 0.03 0.3 ± 0.04
AUC0-t 44.6 ± 5.0a 201.5 ± 39.2b

(+352%)
206.8 ± 35.9b

(+362%)
250.2 ± 31.2b

(+461%)
MRT 287.6 ± 26.4a 1174.1 ± 255.8b

(+308%)
1124.1 ± 189.6b

(+291%)
1248.8 ± 242.3b

(+334%)

Values are means ± S.E.
Mean in a row without a common superscript differ, P < 0.05.
A mean with a symbol “a” was significantly different from a mean with a symbol “b”, and the symbol “ab” means that this treatment
group show no significant difference when compared to other groups.
Tmax (min): time to reach peak serum concentration.
Cmax (mmol,mL�1): peak serum concentration.
AUC0-t (mmol,min,mL�1): area under the blood concentrationetime curve.
MRT (min): mean residence time.
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the AUC0-t and MRT of MTX, indicating that the
oral bioavailability of MTX was greatly enhanced by
the coadministration of MOC. Likewise, when rats
were given the 7th dose of MOC at 2.0 g/kg before

MTX, the oral bioavailability of MTX was increased
in comparably great extent with the single-dose
treatments. Observation of the serum profiles
among four treatments revealed that the four curves
in the very short absorption phase were essentially
overlapping, and the post-absorption profile of
control group was much lower than other three
groups coadministered with MOC, indicating that
either single dose or multiple doses of MOC
markedly decreased the elimination of MTX.
Therefore, the increased bioavailability of MTX was
apparently resulted from the inhibited elimination
of MTX.
Referring to relevant pharmacokinetic studies,

MN and the glucuronides/sulfates of MN were
existing in the serum after ingestion of MN, while
after administration of HK, only the glucuronides/
sulfates of HK were present in the plasma, but no
parent form of HK [11,12], indicating that MN and
HK underwent extensive phase II metabolism,
especially HK. Accordingly, for mimicking the vir-
tual molecules contacting with transporters at the
apical membranes of liver and kidney, MOCM was
prepared from the serum of rats administered with
MOC. Then, MOCM was used in cell studies to
evaluate the modulation effects on MRP2 and BCRP.
In recent decades, several polyphenolics and their

conjugated metabolites were verified as substrates
and/or inhibitors of MRPs and BCRP [31,39e41],
and MTX is also a substrate of MRP2 and BCRP,
therefore, MRP2 and BCRP were proposed to be
involved in the mechanism of MOC-MTX interac-
tion. Subsequently, cell lines including MDCKII-
WT, MDCKII-MRP2 and MDCKII-BCRP were
employed for the mechanism elucidation.
Regarding the involvement of MRP2 in this MOC-

MTX interaction, cell studies showed that the
intracellular accumulation of GSMF, a typical sub-
strate of MRP2, was increased by MN, HK and
MOCM, indicating that MN, HK and MOCM all
inhibited the MRP2-mediated efflux transport.
Based on previous pharmacokinetic findings, we
could assume that the free form MN, MN glucuro-
nides/sulfates and HK glucuronides/sulfates were
the major causative molecules of MOCM in in-
hibitions on MRP2 [11,12]. Because MTX was pre-
dominantly eliminated via kidney, once the MRP2
on the apical membrane of kidney was inhibited by
MOCM, the excretion of MTX would be reduced.
On other hand, MOC did not exert influence on
MRP2 activity, we speculated that beyond MN and
HK, some other compositions in MOC might acti-
vate MRP2 and cancel out the inhibition effects
caused by MN and HK. Taken together, we
concluded that the MRP2-mediated renal excretion

Fig. 3. Effects of (A) MOC (mg/mL), (B) MN (mM), HK (mM) and MK
571 (50 mM, a specific inhibitor of MRP2) on the intracellular accu-
mulation of GSMF (mean ± S.D.) in MDCKII-WT cells. (C) Effects of
MOCM (1- and 1/2-fold serum concentration) and MK 571 (100 mM,
spiked in blank serum) on the intracellular accumulation of GSMF
(mean ± S.D.) in MDCKII-MRP2 cells. (*P < 0.05, **P < 0.01,
***P < 0.001).
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of MTX was inhibited by MN, MN glucuronides/
sulfates and HK glucuronides/sulfates, which could
in part account for the decreased elimination and
enhanced systemic exposure of MTX after MOC
coadministration.
Concerning the probable involvement of BCRP in

this MOC-MTX interaction, our previous study
found that MN and HK at concentrations of
12.5e100 mM significantly inhibited BCRP [16],
conversely, this study showed that MOC slightly
activated BCRP. We speculated that beyond MN
and HK, some other constituents of MOC strongly
activated BCRP and overwhelmed the inhibition
effects caused by MN and HK. On other hand,
MOCM at 1-fold serum concentration did not in-
fluence the function of BCRP. These results indi-
cated that both MOC and MOCM did not inhibit the
efflux transport of BCRP. Accordingly, we could
infer that MOC ingestion did not inhibit the BCRP-
mediated elimination of MTX. Therefore, BCRP was
not involved in the mechanism of MOC-MTX
interaction.
In brief, coadministration of MOC inhibited the

MRP2-mediated renal excretion of MTX and resul-
ted in marked increases of the systemic exposure
and mean residence time of MTX. Besides, during
the pharmacokinetic study, we also noticed that the
mortalities of rats in the three groups coadminis-
tered with MOC were higher than that of control
group. The control rats administered MTX alone all
survived very well throughout the study. Appar-
ently, the enhanced mortalities of MTX in rats was
arisen from the markedly increased systemic expo-
sure of MTX when MOC was coadministered.
In clinical settings, if patients are given low dose

of MTX for treating rheumatoid arthritis or psoriasis
[42e44], coadministration of MOC may lead to

better efficacy. Nevertheless, when cancer patients
are treated with high dose of MTX [45], the coad-
ministration of MOC may result in serious adverse
effects. Therefore, clinicians are suggested to be
cautious for the blood concentration monitoring and
dose adjustment of MTX when high dose of MTX is
coadministered with MOC. Furthermore, the con-
current use of MOC with any critical substrate
drugs of MRP2 should be avoided.
In conclusion, coadministration of MOC markedly

increased the systemic exposure and mean resi-
dence time of MTX through inhibiting the MRP2-
mediated renal excretion of MTX. We suggest that
the concomitant use of MOC with MTX should be
with great caution.
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