

一微生物檢驗與環境監控

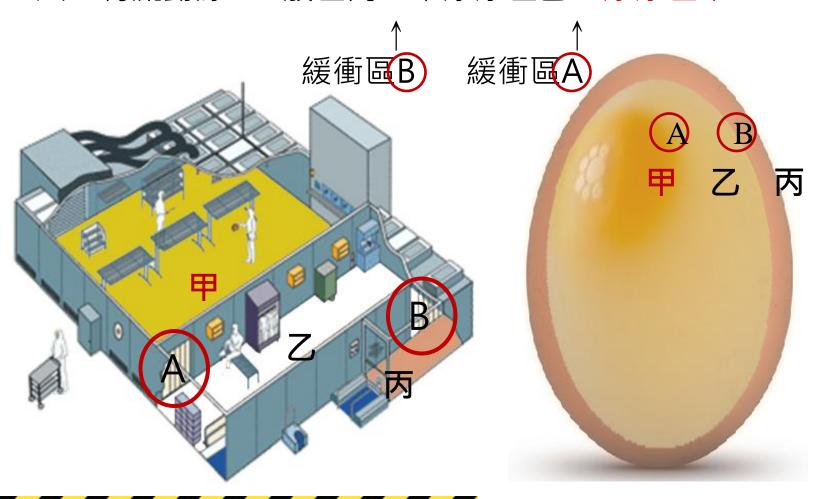
環境管控與微生物監測

- 主辦單位:衛生福利部食品藥物管理署
- □ 承辦單位:社團法人中華民國學名藥協會
- □ 講 師:嘉南藥理大學化粧品系 林朝賢 助理教授
- □ 地點:臺大醫院國際會議中心 402會議室
- ┛ 時間:110年11 月 04 日

環境管控與微生物監測大綱

- □潔淨區概念與衛生安全管理
 - ✓ 動線規劃
 - ✓ 儀器設置規劃
- □作業區環境微生物檢驗方法介紹
 - ✓ 培養基配製
 - ✔ 微生物檢驗基本概念
- □作業環境的微生物監測
 - ✓ 空氣品質監控
 - ✓ 水質監控

潔淨區的概念



化粧品GMP衛生安全管制流程

廠房動線規劃

■ 人、物流動線:一般區丙→準潔淨區乙→潔淨區甲

儀器設置動線規劃

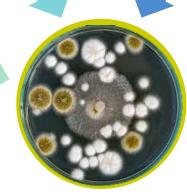
品管檢驗:物性、化性、微生物、滅菌

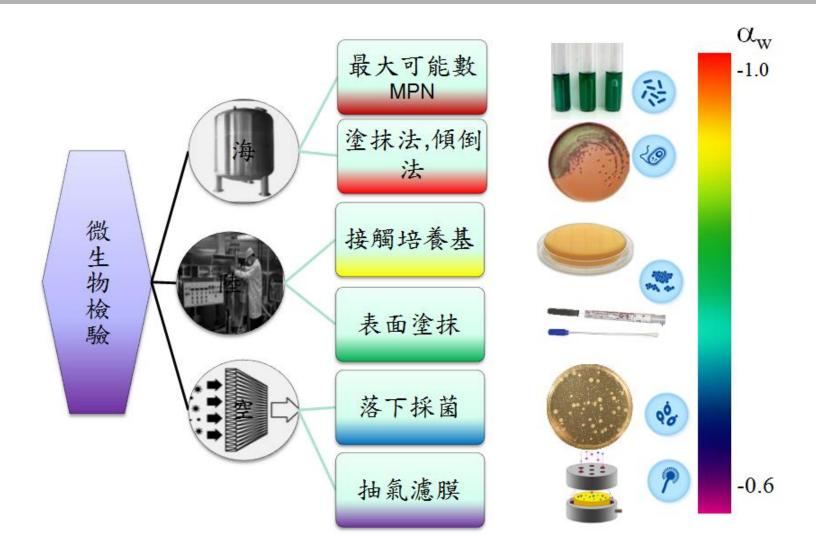
製程設施:無塵、空壓、熱交換、抽料、純水

排污設施:廢氣、廢水、集塵、蟲鼠害、廢棄物

設備隱形死角-微生物天堂

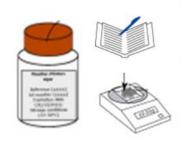
空壓機





熱交換機

純水系統與管路


作業區環境微生物檢驗方法介紹

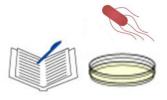
認識檢驗常用培養基

檢測項目	適用培養基	重要成分	溫度℃
化粧品細菌限量檢驗	Modified Letheen agar	防腐劑中和劑	30
水質檢驗總生菌	Plate count agar	酪蛋白分解物	30
空氣落下菌檢驗細菌	Plate count agar / Tryptic soy agar	酪蛋白分解物	30
空氣落下菌檢驗真菌	Malt extract agar/ Potato dextrose agar	麥芽抽出/馬鈴薯 醣類	25
化粧品真菌限量檢驗	Potato dextrose agar /chlortetracycline	馬鈴薯醣類	25
廠污細菌繼代培養	Tryptic soy agar	大豆分解蛋白	30
大腸桿菌	Eosin methylene blue agar (Levine)	乳糖、酸鹼指示劑	35
金黃色葡萄球菌	Baird parker agar	氯化鋰、丙酮酸鈉	35
綠膿桿菌	Cetrimide agar	溴化烷基三甲基铵	35
白色念珠菌	Sabouraud dextrose agar	葡萄糖、抗菌劑	30

8-steps培養基製作

1.秤重

2.加水攪拌

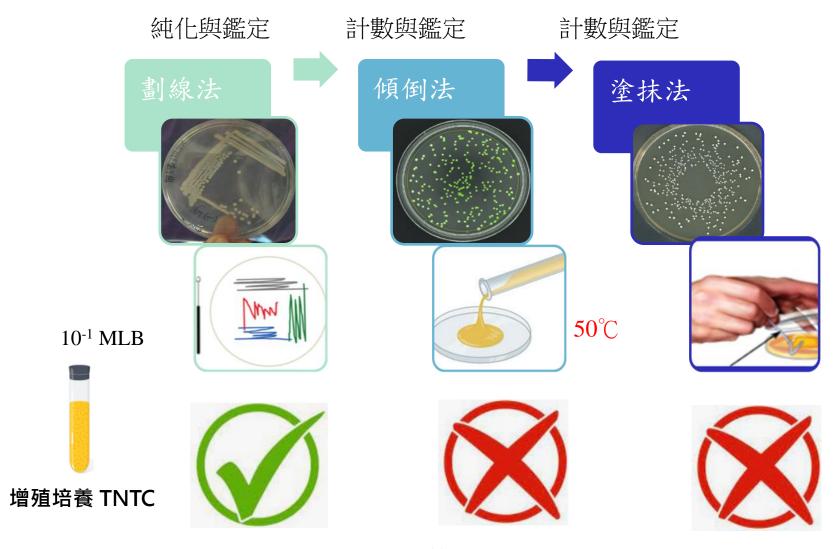

3.調pH

4.滅 菌

8.檢驗

7.效能試驗

6.封袋保存



5.傾到製作

培養基效能試驗

- 培養基選用應有適合性(含抑菌性)評估。為了避免檢驗呈偽 陰性,微生物試驗必須執行效能試驗。為確保培養基之適用 性,每配製批培養基需要執行陽性試驗。
- 每種培養基要根據它的包裝形式與儲存條件執行安定性試驗 , 訂定末效期。
- 依藥典方法測試,陽性測試菌株(例如 E.coli ATCC25922)是 具有其代表種的穩定特性,並能有效證明特定培養基最佳性 能的一株菌。藥典通常要求來自當前批次培養基上的生長的 菌落計數不低於前批合格批次的 50% (USP 2003b) 或 70% (USP 2004)。即通過效能試驗。
- 配製培養基時應注意標籤上提供物理化學參數、 pH值(真菌 與細菌有差異)、有效期或滅菌條件等資訊。

微生物檢驗基本概念

國際慣用微生物限量試驗

Approval standards	ISO 21149, Cosmetics — Microbiology — Enumeration and detection of aerobic mesophilic bacteria	ASEAN microbial limit test for cosmetic products ACM THA 06	China: Standard methods of microbiological examination for cosmetics, General rules化 妆品微生物标准 检验方法细菌总 数测定 GB 7918.1-87	U.S. Pharmacopeia - USP 37- <61> Microbial examination of nonsterile products: microbial enumeration tests	COLIPA, Guidelines on Microbial Quality Management, published by the European Cosmetic, Toiletry and Perfumery Association, 1997	E P, Microbiological Examination of non-sterile products, 4th edition, published by the European Pharmacopoeia, 2002	FDA, Bacteriological Analytical Manual, published by the U.S. Food and Drug Administration, 2017
Recommen ded media list	Bacteria: Soybean- casein digest agar (SCDA); Eugon LT 100 agar	Bacteria: Modified letheen agar (MLA) Mould and yeast: Malt extract agar (MEA) ; Potato dextrose agar (PDA)	Bacteria: SCDLP medium (Soybean- casein digest agar; SCDA with polysorbate 80, lecithin)	Bacteria: Soybean- casein digest agar (SCDA); Trypticase soy agar (TSA) Sabouraud dextrose agar	Bacteria: Soybean- casein digest agar (SCDA)/buffere d sodium chloride- peptone solution with neutralizing agents. e.g. polysorbate 20 or 80, lecithin, thiosulphate	Bacteria: Fluid thioglycollate medium; Soybean- casein digest agar (SCDA)	Bacteria: Modified letheen agar (MLA) (M78) Mould and yeast: Malt extract agar (MEA) (M93) Commercial bacterial identification kit (API or equivalent)
Validation test	Validation of the efficiency of neutralizer	Validation of the efficiency of neutralizer	Not mentioned	Promotion tests for media are required	Not mentioned	Promotion and validation tests for media are required	Not mentioned

證明培養基效能: 微生物恢復確效試驗

Negative control: dilute broth/ no contamination

Positive control: Growth promotion

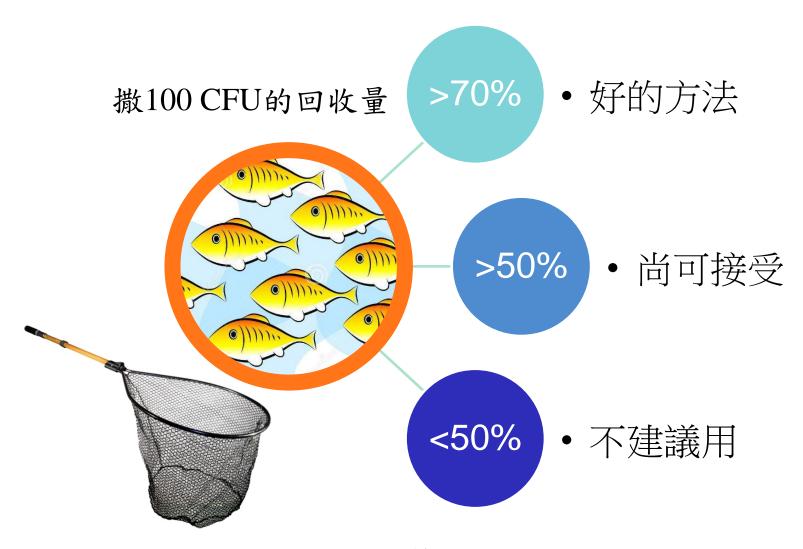

Treament methods:
Neutralization
/ filtration/ dilution

TABLE 3. Culture Conditions for Preparation of Standardized Cell Suspensions and for Microbial Recovery Studies in Method Validation Experiment (*United States Pharmacopeia* Chapter <61>).¹¹


ORGANISM	CULTURE MEDIUM	TEMP (°C)	TIME (CELL SUSPENSION)	TIME (RECOVERY)
S. aureus	Soybean-Casein Digest (broth, agar)	30 to 35	18 to 24 hours	≤3 days
P. aeruginosa	Soybean-Casein Digest (broth, agar)	30 to 35	18 to 24 hours	≤3 days
B. sutillis	Soybean-Casein Digest (broth, agar)	30 to 35	18 to 24 hours	≤3 days
C. albicans	Sabouraud Dextrose (agar, broth)	20 to 25	2 to 3 days	≤5 days ^a
A. brasiliensis	Sabouraud Dextrose Agar or Potato-Agar	20 to 25	5 to 7 days	≤5 daysª

^aAlternate medium: Sabouraud Dextrose Agar or Soybean-Casein Digest Agar

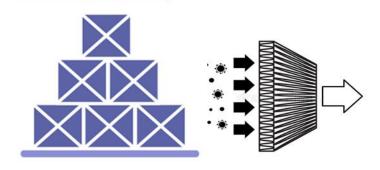
確效的方法論

化粧品品管實驗室動線設計圖

工廠作業環境的微生物監測

- 作業場所環境落實管理,降低微生物污染風險,並以 微生物檢測為確認品質之基礎
- 需制訂製造作業場所空氣品質、設備清潔及製造用水等的微生物管制計畫。此計畫應包含適當的規格、標準、取樣計畫及測試方法、測試頻率及行動界限。並依實施檢驗結果紀錄保留原始數據。
- 關鍵區域應有溫溼度、壓差設計,有微粒子檢測資料(定期檢測或初始檢測),如僅執行初始檢測,濾網須定 期更換。
- 關鍵區域應有微生物定期監測,落下菌檢驗至每半年 1次

空氣品質監測選項


- 風速、風量(均勻性)與空氣換氣數測試
- HEPA過濾器洩漏測試
- 空氣懸浮微粒計數
- ■房間壓差測試
- 溫度與濕度均勻性測試
- 潔淨區隔完整性測試
- 微粒落塵計數

空調系統

- ■空氣處理單元(空調箱)
- ■空調風管系統
- ■空氣過濾
- ■環境測試項目的選定
- ■潔淨室驗證所需的測試程序
- ■微生物污染測試

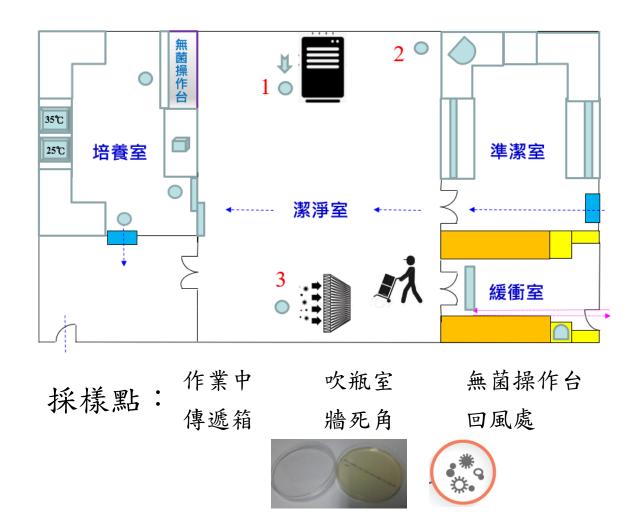
潔淨室空氣處理單元(空調箱)

- 空氣處理單元是中央空調系統之核心,其硬體設備包括送回風機、加熱和冷卻盤管、加濕器、過濾器及其調節控制裝置。
- 此區域對於清淨度及其他環境控制參數有較嚴格要求 ,此區域之溫度、濕度等控制條件不能受外界影響, 且需有較嚴格的控制。
- 百葉式和格柵式回風口,常見因不當擺設之設備、物品或人員造成回風的阻礙會影響空氣品質。

HEPA過濾器洩漏測試

- 風速、風量(均勻性)與空氣換氣數測試
- ■目的是確認HEPA過濾設備安裝妥當,沒有旁通洩漏, 過濾器沒有損壞及小漏洞

室內空氣微生物污染測試


- ■落菌法
- ■空氣取樣法
- ■培養Ⅲ指壓法
- ■培養Ⅲ接觸法
- ■表面擦拭取樣法

落下菌法

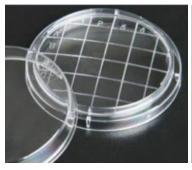
- (一)試驗方法之限制:
- 要檢測低污染程度的空氣懸浮微生物,除非長時間的 暴露,否則落菌法靈敏度不高。
- ■避免培養基表面會有乾涸的問題。
- (二)採樣地點:採樣地點是在必須監測微生物管制環境之位置,位置地點必須確定是需管控之環境以及可能遭受微生物污染之所在。
- 應以"最差狀況"的條件來監測
- 監測總生菌數可使用TSA(SCDM), PCA
- 監測總真菌數可使用MEA, PDA

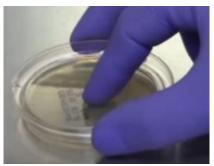
落下菌採樣settle plates監測位置

潔靜室空氣測試之參考標準

ISO14644	FS 209	≥0.1 μm/ft³	≥ 0.2 μm/ft³	≥0.3 μm/ft³	≥0.5 μm/ft³	≥5.0 µm/ft³
4	Class 10	350	75	30	10	
5	Class 100		750	300	100	
7	Class 10,000				10,000	70
8	Class 100,000				100,000	700

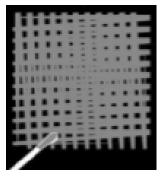
潔淨等級	90mm落菌 CFU/ 4hrs	90mm落菌 CFU/ 1hr
Class 100,000	< 100	< 20
Class 10,000	< 50	< 5
Class 100	< 5	< 1


培養Ⅲ指壓法

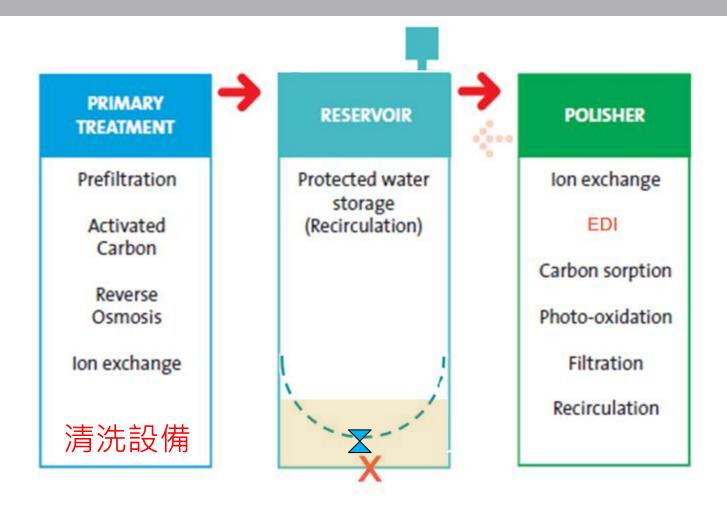

- (一)試驗方法之限制:
- (二)採樣頻率:每一作業員每週至少做一次試驗(左右手分別用不同的培養皿)。針對新進作業員或審查發現有特殊問題時,需增加監測頻率。
- (三)採樣方法:
- (四)建議之參考標準:印5根手指/手套
- cfu/手套 < 1 (Class100級區)
- < 5 (Class10,000級區)

培養Ⅲ接觸法

- 表面污染,環境中沉降之微生物或經由作業員直接之 觸摸。
- 其中一個採樣之目的在於判斷清潔動作的清潔效果。
- 標準接觸培養皿(RODAC: replicate organism detection and counting)應含足夠的生長培養基,並使培養基表面凸起,培養皿底部可以刻劃格子,使用瓊脂的凸起面直接接觸欲檢測場所的表面(如皮膚、牆壁、地板、桶槽內部)來作衛生管制。
- 最好用於檢測微生物污染數量低且平坦的表面

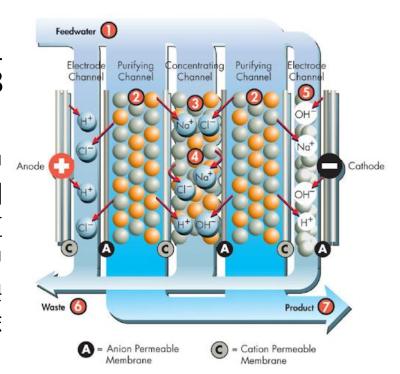


表面擦拭取樣法

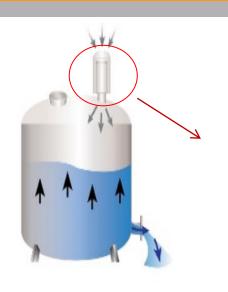

■擦拭法可用於補強檢測不規則表面,特別像攪拌葉片、衣服表面。 將被擦拭的區域 一般來說,大小約 24-30 cm² 的範圍內。樣本採集後,將拭子置於適當的稀釋劑,並塗抹在所需的培養基。

超純水循環系統

RO純水系統/純水儲存槽/超純水系統


飲用水與純水水質規格

細菌性標準	最大限值	單位
大腸菌群	6 (多管發酵)	MPN/100 mL
	6 (濾膜法)	CFU/100 mL
總菌落數	100	CFU/mL
物理性標準	最大限值	單位
臭度	3	初嗅數
臭度 濁度	3 2	初嗅數 NTU

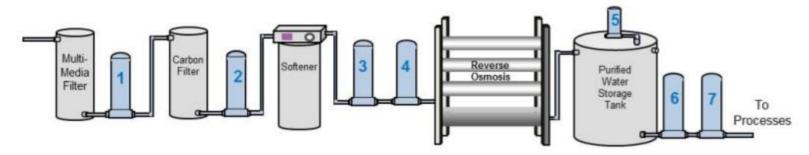

藥典檢測項目	純水規格
導電度	< 1.3 μs/cm @25°C
TOC	< 500 ppb
微生物	< 100 CFU/ ml

EDI(electrodeionization)超純水原理

- 可將水的電阻值由 0.05-0.1
 MQ/cM (type IV)提升至15-18
 MQ/cM (type I)。
- EDI工作原理如圖所示。EDI膜塊中 將一定數量的EDI單元用格板隔開 又在單元兩端設置陰/陽電極。在直流電的推動下,通過淡水室水流中的陰陽離子分別透過陰陽離子交換 膜遷移到濃水室而在淡水室中去除

室內空氣污染物與空氣過濾器

- ←活性碳:除有機物
- ←鹼石灰:中和碳酸
- ←微孔濾膜:除微生物、懸浮微粒



純水污染項目	污染值		單位
二氧化碳 (CO ₂)	8 hrs	1,000	ppm
總揮發性有機化合物(TVOC)	1 hr	0.56	ppm
細菌(Bacteria)	max	1,500	CFU/m ³
真菌(Fungi)	max	1,000	CFU/m ³
< 10 μm之懸浮微粒 (PM ₁₀)	24 hrs	75	µg/m³
< 2.5µm之懸浮微粒 (PM _{2.5})	24 hrs	35	μg/m³

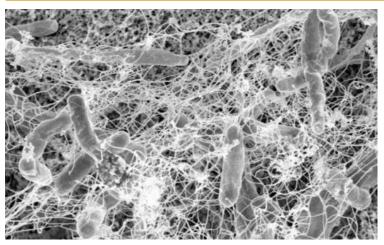
空氣過濾器(air vent)能 有效發揮功能,需要能 夠氣密的儲槽蓋(內有氣 密O型環),氣密的液位 控制接頭,具有逆止閥 的溢流管(防止倒流污染) 等配套措施

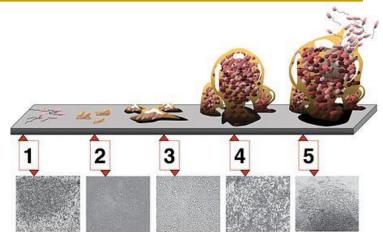
純水系統與消毒方法

Figure 1 - Filters in Process Water Systems

- 1 Particle Filtration
- 2 Carbon Fines Trap
- 3 Resin Trap

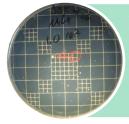
- 4 RO Prefilter
- 5 Tank Vent Filter
- 6 Bioburden/Fine Particle Reduction Filter
- 7 Sterilizing Water Filter


方法	內容	效果
化學消毒劑	常用有臭氧、次氯酸鹽、過氧化氫、戊二醛等進行消毒	在適當濃度與處理時間,雖具有殺菌的效果, 但會有藥物殘留疑慮。此方法無法有效除去生 物膜,將導致消毒後微生物復長增殖的可能性
熱水殺菌	熱消加熱到65至80℃,並加以循環處理	需要外加加熱設備,此方法亦無法有效除去生物膜,將導致降溫後微生物復長增殖的可能性
紫外線照射	254 nm 紫外線照射	照射時間持續30分鐘才有殺菌效果
物理性刮除	超音波、週波震盪、噴槍	能利用強波能量將表面生物膜清除


污染與消毒

- 了解清潔、消毒與滅菌之重要性
- 明瞭消毒與滅菌的效能監測及運用
- ■影響消毒與滅菌的因素
- 微生物的數量、種類- 抵抗力程度
- ■消毒劑的種類、濃度
- 浸泡消毒劑時間長短、溫度 、pH值
- 滅菌方式與物件的潔淨度、含水量

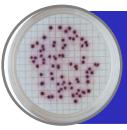

純水系統與生物膜



輸送管設計與管理

*停工時,製程用水儲存桶及管路仍應以循環或排空為原則, dead leg 應小於6D,閥件至少為蝶閥(球閥有水體滯留疑慮)。

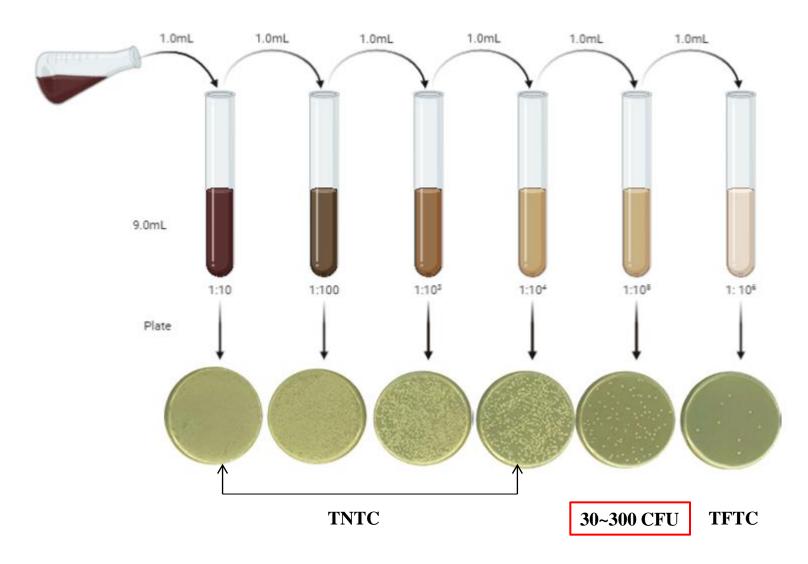
水質總生菌數檢驗方法


混合稀釋法 NIEA E204.52B

• 1.0 ml 水檢體吸至空培養皿 · 倒入20 ml 50℃胰化蛋白 陳葡萄糖抽出物培養基(TGEA)或在培養皿計數培養基 (PCA)35 ± 1 ℃培養 48 ± 3 小時

多管發酵法 NIEA E201.54B

本方法係以檢測水中革蘭氏染色陰性,且能在LST培養基
 35±1°C培養48±3小時發酵乳糖並產生酸及氣體之大腸桿菌群



濾膜法 NIEA E230.55B

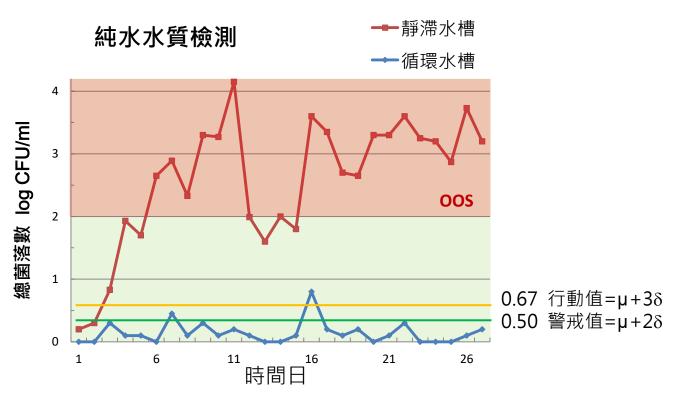
• 35 ± 1℃ 以 m-Endo agar LES培養基培養 48 ± 3 小時 後觀察計數

- 水質檢驗(儲桶或循環 管路)
- 1) 水質檢驗(每週至少 1次)或製程參數監控得 擇一確認;應每月至 少1次定期微生物檢測 (生菌數之容許限值 100 CFU/ mL)
- 2)製程參數監控:至少 應包含導電度。
- 3) 微生物水質檢測驗: 建議各使用點每月至 少取樣檢測1次,且每 週至少取樣檢測1點。

水質總生菌數檢驗方法

數據計算處理

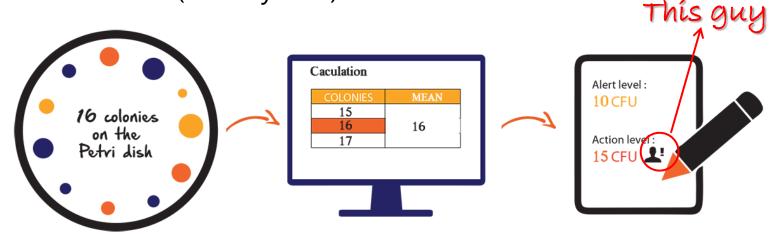
- 以含 30 至 300 CFU之同一稀釋度的二重複計算其總菌落數,計算如下:
- 註:D:菌落數在 30 至 300 個之間的稀釋度; X、Y:D稀釋度的兩個培養 Ⅲ之菌落數 選取培養皿之菌落數總和 總菌落數(菌落數(CFU)/mL)=


(1.0/D) + (1.0/D)

- 總菌落數小於100時,以整數表示(小數位數四捨五入),總菌落數大於 100以上時,只取兩位有效數字,並以科學記法表示,例如總菌落數為142 時以1.4 x 10²表示。
- 檢測紀錄須註明取水採樣點編號、採樣時間、培養時間、培養基名稱、培養溫度及各稀釋度的數據等相關資料。
- 若菌落太多造成計數困難時,則以"菌落太多無法計數" (Too numerous to count; TNTC)表示。若檢測呈現零CFU時,實際結果應代表 < 10 CFU/ml; 不代表無菌或零檢出。

注意事項:

- 微生物採樣及檢測人員應具備微生物基本訓練及知識。
- 進行微生物檢驗時,所用的器具均應經滅菌處理。
- 每批次採樣時,應避免人為污染。
- 每批次檢驗需進行試劑空白實驗。
- 應記錄所有稀釋度水樣的原始數據,以備查核之用。
- 每個稀釋度水樣需至少進行二重複。
- 依歷史紀錄回顧,建立水質系統污染警戒與行動值, 作為CAPA依據。


儲水槽循環維護與風險管理的關係

當超純水靜滯開始曝露在大氣下時,二氧化碳溶解至水中。 二氧化碳→碳酸→碳酸根離子。利用電導率(conductivity)或pH的變化來監視這個過程。當水中離子濃度持續增加,電導率會持續升高(或電阻抗值持續下降),通常,在一小時之內,導電度會由 0.055μ S/cm ($18.2M\Omega.cm$)升高到 0.25μ S/cm以上(下降至 $4M\Omega.cm$ 以下),整個過程中水中總離子濃度甚至提高到4.5倍以上。

為什麼要設警戒值和行動值?

- 因為大部分的現行微生物技術,需要至少48小時才能得到確定的 結果(ATP 冷光儀檢測除外)。在出現結果之前,這些水已經用於製 造過程。
- 警戒值或行動值有別於允收規格,它們仍是處在合格允收界限內, 是用來監測和預測未來即將發生品質劣化的趨勢。
- 警戒值是一種基準或範圍,超越時表示該製程已脫離正常操作條件。警戒界限為一種預警狀態,但不需採取矯正措施。然超過行動值則要立即介入矯正以預防不合格品產生。品管實為掌控與管理工廠大數據的關鍵人(the keyman)。

Thanks for your listening

授課老師:林朝賢 博士

服務單位:嘉南藥理大學

聯絡電話: 0911-714-981

E-mail: chlin152003@gmail.com