食鹽中重金屬之檢驗方法

110 年度食品中污染物質之檢驗方法推廣訓練班

講師:施又寧 助理研究員

日期:110.10.29

報告大綱

- 現行公告檢驗方法比較
- 前處理方式及分析儀器
- 內標評估
- 確效試驗
- 方法流程

檢驗方法 介紹

- 緣起
- 整併原則
- 現況
- 衛生標準及對應方法

未來整併 方向

現行公告及建議檢驗方法比較

	食鹽中重金屬檢驗方法 - 銅、 鉛及鎘之檢驗 (MOHWH0007.01)	食鹽中重金屬檢驗方法 - 砷 之檢驗(MOHWH0008.01)	食鹽中重金屬檢驗方法 - 汞 之檢驗(MOHWH0009.01)
前處理 方式	經離子交換樹脂去鈉	酸輔助消化(石墨熱板消化)	溶解
使用溶劑	2M 硝酸溶液 2M 氨水溶液 醋酸銨緩衝溶液 1% (v/v)硝酸溶液	1.25M 硫酸溶液 5%過氧焦硫酸鉀溶液 1% (v/v)鹽酸溶液 30% (v/v)鹽酸溶液 0.1N 氫氧化鈉溶液 1%硼氫化鈉溶液 40%碘化鉀溶液	1% (v/v)硝酸溶液
分析 儀器	ICP-MS	原子螢光光譜儀(AFS)	直接進樣汞分析儀(DMA)
定量極限	銅、鉛及鎘均為 0.02 ppm	0.01 ppm	0.02 ppm

不同前處理方式

離子交換樹 脂去鈉

● 優點:去除鈉離子,減少分析時的質譜干擾。

- 缺點:
- 1. 流程繁複,耗時長(約需2天)。
- 2. 易污染。

優點:流程簡單,耗時較離子交換樹脂短(約需3.5小時)。

● 缺點:需有良好的抽風設備及耐腐蝕抽風管路。

離子交換樹脂及石墨熱板消化均不太符合現今的檢驗趨勢,故本方法採用微波輔助酸消化進行前處理。

酸輔助消化 (石墨熱板消化)

微波消化條件

條件	輸出功率	升溫時間	持續時間	溫度控制
步驟	(W)	(min)	(min)	(°C)
1	1200	15	10	210

不同分析儀器

	直接進樣汞分析儀 (DMA)	原子螢光光譜儀 (AFS)	感應耦合電漿質譜儀 (ICP-MS)
原理	樣品於裂解腔進行消化分解後, 經由汞齊管使汞與金形成合金吸附,再加熱脫附後進行分析。	檢體經硫酸及過氧焦硫酸鉀溶液 消化,使其中的砷轉為五價砷, 接著以碘化鉀還原為三價砷,再 進行氫化反應,生成具螢光特性 之砷化氫後進行分析。	利用載流氣體氬氣所產生的高能 量使樣品原子化及離子化,再進 行質量分析。
優點	1.分析時間短,分析一個樣品約需5分鐘。 2.不需要進行樣品製備。	1.價格便宜。 2.感度佳。	1.分析時間短,分析一個樣品僅需3分鐘。 2.可同步分析多種元素。
缺點	1.只能檢測汞1個元素。 2.儀器非普遍性,檢驗效益較低。	1.前處理方式耗時長。 2.需額外搭配氫化裝置。 3.每次僅能分析單一元素。	1.價格昂貴。 2.樣品需經前處理才能上機。
儀器 圖示	COLUMN TO THE REAL PROPERTY OF THE PARTY OF	Market Ma	(人) 民 民 田 栄 彻 旨 垤 看
			TI DA Food and Drug Administration

感應耦合電漿質譜儀操作條件

Parameter	Condition
RF power	1550W
Sample depth	10.0 mm
Ar plasma gas flow rate	15 L/min
Ar auxiliary gas flow rate	0.9 L/min
Carrier gas	0.8 L/min
Dilution gas	0.2 L/min
He gas	5 mL/min
Nebulizer pump	0.10 rps

提高稀釋氣體(dilution gas)流速,減少鹽類進入儀器,增加儀器對鹽類之耐受性。

提高氦氣碰撞氣體流速,以解決 ⁴⁰Ar³⁵CI干擾砷分析的情況。

內標前後添加之回收率

Treatment	Element	Spiked level (mg/kg)	Recovery ^a (%)	CV (%)
克梅 前运机	¹¹⁴ Cd	0.02	972.3	25.8
內標 <u>前</u> 添加	²⁰⁸ Pb	0.02	1028.2	110.8
九 塘丝泽加	¹¹⁴ Cd	0.02	<u>96.3</u>	0.84
內標 <u>後</u> 添加	²⁰⁸ Pb	0.02	<u>111.2</u>	2.83

a: n = 3.

多重內標評估

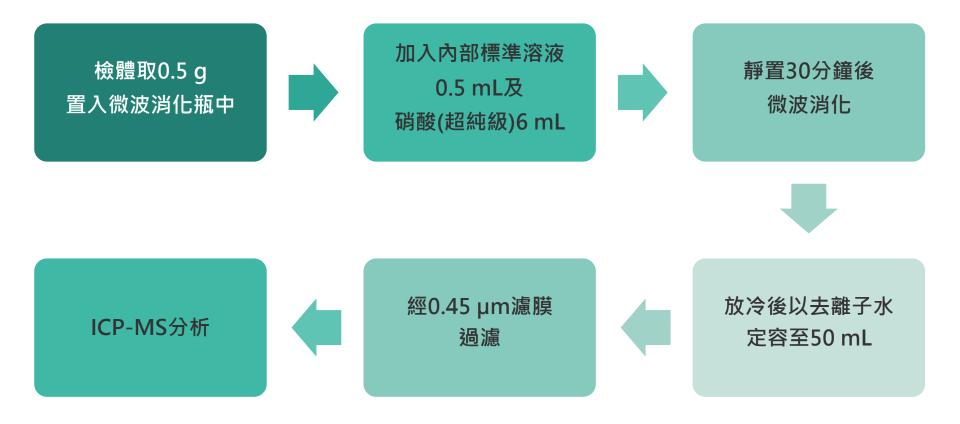
Sample	Analyte	ISTD	Recovery ^a (%)	CV (%)	Recommended ISTD	Recoverya (%)	CV (%)
	⁶⁵ Cu		<u>117.3</u>	2.0	⁴⁵ Sc	<u>109.9</u>	1.2
	⁷⁵ As		<u>84.6</u>	1.5	⁷⁴ Ge	91.4	2.0
食鹽基質	¹¹⁴ Cd	¹⁰³ Rh	105.6	2.4	¹⁰³ Rh	105.5	1.1
	²⁰¹ Hg		105.7	6.7	¹⁹³ r	100.1	3.6
	²⁰⁸ Pb		<u>111.0</u>	1.6	²⁰⁹ Bi	<u>102.1</u>	2.7

a: n=3.

確效試驗

	Cuilcad layed	Intra	-day ^a	Inter-day ^b
Element	Spiked level	Recovery	CV	CV
	(mg/kg)	(%)	(%)	(%)
	0.05	101.2	3.95	6.20
⁶⁵ Cu	0.1	101.0	2.89	6.40
	0.2	115.2	1.03	0.94
	0.05	102.2	7.18	7.12
⁷⁵ As	0.1	98.3	9.22	6.71
	0.2	106.7	4.62	2.21
	0.02	100.0	3.12	5.67
¹¹⁴ Cd	0.1	97.7	2.70	3.85
	0.2	104.5	2.01	0.83
	0.02	108.9	6.79	2.58
²⁰² Hg	0.1	102.8	0.97	2.10
	0.2	107.3	1.44	1.62
	0.02	104.0	2.63	4.43
²⁰⁸ Pb	0.1	97.7	3.08	3.57
	0.2	101.1	0.54	1.23

a: n=5. b: n=10.


市售產品

Sample			含量(mg/kg)a		
Sample	⁶⁵ Cu	⁷⁵ As	¹¹⁴ Cd	²⁰² Hg	²⁰⁸ Pb
玫瑰鹽	0.08 ± 0.008	0.06 ± 0.009	N.D.	N.D.	0.10 ± 0.009
沖繩島鹽	N.D.b	N.D.	N.D.	N.D.	N.D.
天然海鹽	0.21 ± 0.028	0.06 ± 0.007	N.D.	N.D.	0.24 ± 0.022
高級碘鹽	0.16 ± 0.002	N.D.	N.D.	N.D.	N.D.
優·紅岩鹽	0.49 ± 0.055	0.08 ± 0.006	N.D.	N.D.	0.19 ± 0.004
減鈉含碘鹽	0.23 ± 0.016	N.D.	N.D.	N.D.	0.03 ± 0.005
食品中污染物質及 毒素衛生標準	2	0.2	0.2	0.1	2

a: Mean±SD, n=3.

b: Not detected.

食鹽中重金屬檢驗方法(TFDAH0013.01)流程

食鹽中重金屬檢驗方法 - 銅、鉛及鎘之檢驗(MOHWH0007.01) **優化後**流程

檢體取10 g · 以去離子水 1000 mL溶解

注入離子濃縮管柱

依序以去離子水及醋 酸銨緩衝溶液沖洗, 棄流出液

以去離子水定容至 20 mL

加入內部標準溶液 0.2 mL

以2 M硝酸溶液 2 mL沖提·收集並 合併沖提液

經0.45 μm濾膜 過濾

ICP-MS分析

總結

- 現行建議檢驗方法**食鹽中重金屬檢驗方法(TFDAH0013.01)**
 - 1. 本方法經確效評估,可符合本署「食品化學檢驗方法之確效規範」。
 - 2. 小型市售產品調查結果,6件食鹽產品皆符合「食品中污染物質及毒素衛生標準」。
 - 3. 「食鹽中重金屬之檢驗方法(TFDAH0013.00)」已於109年6月10日公開供各界參考引用,未來將公布為公告檢驗方法。
- 現行3篇公告檢驗方法
 - 1. 「食鹽中重金屬檢驗方法 砷之檢驗(MOHWH0008.01)」及「食鹽中重金屬檢驗方法 汞之檢驗(MOHWH0009.01)」**預計廢止**。
 - 2. 修正「食鹽中重金屬檢驗方法-銅、鉛及鎘之檢驗(MOHWH0007.01)」內標添加時機後,轉為建議檢驗方法。

總結

	食鹽中重金屬檢驗方法 - 銅、鉛及鎘之檢驗 (MOHWH0007.01)	食鹽中重金屬檢驗方法 - 砷之檢驗 (MOHWH0008.01)	食鹽中重金屬檢驗方法 - 汞之檢驗 (MOHWH0009.01)	食鹽中重金屬檢驗方法 (TFDAH0013.01)
前處理 方式	經離子交換樹脂去鈉	酸輔助消化 (石墨熱板消化)	溶解	微波消化
使用溶劑	1) 2M 硝酸溶液 2) 2M 氨水溶液 3) 醋酸銨緩衝溶液 4) 1% (v/v)硝酸溶液	1) 1.25M 硫酸溶液 2) 5%過氧焦硫酸鉀溶液 3) 1% (v/v)鹽酸溶液 4) 30% (v/v)鹽酸溶液 5) 0.1N 氫氧化鈉溶液 6) 1%硼氫化鈉溶液 7) 40%碘化鉀溶液	1% (v/v)硝酸溶液	1) 含1% (w/w)氯化鈉之 5% (w/w)硝酸溶液 2) 1% (w/w)氯化鈉溶液
分析 儀器	ICP-MS	原子螢光光譜儀(AFS)	直接進樣汞分析儀 (DMA)	ICP-MS
定量 極限	銅、鉛及鎘均為 0.02 ppm	0.01 ppm	0.02 ppm	銅及砷:0.05 mg/kg 鎘、汞及鉛:0.02 mg/kg

16

未來整併方向

緣起

早期受限於檢驗技術,導致同類基質在不同元素之檢驗方法不一

食米中重金屬檢驗 方法 - 汞之檢驗

食米中重金屬檢驗方法-鉛及鎘之檢驗

鉛及

微波湖化搭配ICP-MS

汞

^{*} 聚焦式微波消化搭配 汞原子螢光光譜儀

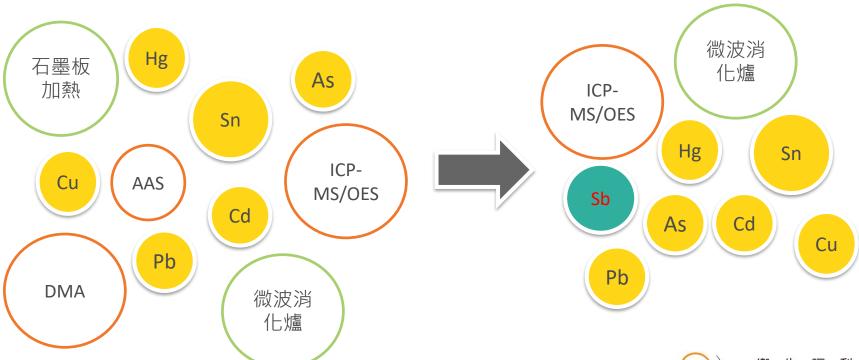
穀類中重金屬之檢驗方法 (TFDAH0012.00)

→ 微波消化搭配ICP-MS,並增加元素砷, 同步分析鉛、鎘、汞及砷等4元素。 蜂蜜

水產動物中重金 屬檢驗方法

畜禽類可食性內臟中 重金屬檢驗方法-鉛及 鎘之檢驗

禽畜 肌肉


水產動物類、禽畜產品類及蜂蜜中 重金屬檢驗方法(MOHWH0028.00)

→ 整併類似基質,以微波消化搭配ICP-MS,同步分析鉛及鎘等2元素。

整併原則

- 審視舊方法是否不合時宜或相似檢驗流程卻分屬不同檢驗方法。
- 確認法規及方法缺口現況。
- 針對基質及分析元素進行分類。

現況

- 開發整併及優化期間,將16篇公告檢驗方法及1篇建議 檢驗方法,整併為7篇檢驗方法。
- 應法規所需,新增5篇檢驗方法。

增進檢驗效率上降低檢驗成本

20

總砷及無機砷

食品	適用方法
穀類	
米(去殼),如:糙米、胚芽米 米(碾白),如:白米 供為製造嬰幼兒食品之原料米 其他穀類	1.總砷:穀類中重金屬之檢驗方法(TFDAH0012.00) 2.無機砷:食品中無機砷之檢驗方法(TFDAH0015.00)
藻類	食品中無機砷之檢驗方法(TFDAH0015.00)
水產動物類 魚類 貝類(不含殼)、頭足類(不含內臟) 甲殼類之可食肌肉(包括附肢肌肉) 其他水產動物	食品中無機砷之檢驗方法(TFDAH0015.00)
食用油脂 供食用之油及脂肪 脂肪抹醬及以脂肪為主要成分之混合抹醬(Fat spreads and blended spreads)	食用油脂及奶油中重金屬檢驗方法(MOHWH0029.00)
包裝飲用水及盛裝飲用水	包裝(盛裝)飲用水及食用冰塊中重金屬檢驗方法 (MOHWH0022.00)
飲料(不包括天然果蔬汁及濃縮果蔬汁) 食鹽	飲料及乳品中重金屬檢驗方法(MOHWH0023.00) 食鹽中重金屬檢驗方法(TFDAH0013.01)
食用冰塊	包裝(盛裝)飲用水及食用冰塊中重金屬檢驗方法 (MOHWH0022.00)
	製類 米(去殼)·如:糙米、胚芽米 米(碾白)·如:白米 供為製造嬰幼兒食品之原料米 其他穀類 藻類 水產動物類 魚類 貝類(不含殼)、頭足類(不含內臟) 甲殼類之可食肌肉(包括附肢肌肉) 其他水產動物 食用油脂 供食用之油及脂肪 脂肪抹醬及以脂肪為主要成分之混合抹醬(Fat spreads and blended spreads) 包裝飲用水及盛裝飲用水 飲料(不包括天然果蔬汁及濃縮果蔬汁) 食鹽

鉛(1)

		食品	適用方法
	2.1	穀類	穀類中重金屬之檢驗方法(TFDAH0012.00)
	2.1.1	穀類 (包括米)	积积中里亚圈之\χ飙/J/Δ(TFDAH0012.00)
	2.2	蔬果植物類	
	2.2.1	葉菜類(Leafy vegetables) ,亦適用於蕓薹屬中之葉菜類。	
	2.2.2	蕓薹屬類(Brassica vegetables):包括結球甘藍(head cabbages)、球莖甘藍(kohlrabi)、花椰菜(cauliflower)、青花菜(broccoli)、抱子甘藍(brussels sprouts)子球部位,蕓薹屬中之葉菜類不適用本標準。	
		根菜及塊莖類(Root and tuber vegetables): 去除項部及土壤後	
	2.2.3	之完整商品,馬鈴薯需去皮後適用。本標準不適用於根芹菜	
		(celeriac)	
	2.2.4	鳞莖類(Bulb vegetables): 洋蔥、蒜頭(garlic), 去除根部、土壤和易脫落之外皮	装用结 物瓶,用擦和用油合口力丢 会 层绘脸
	2.2.5	果菜類(Fruiting vegetables): 去除莖後適用,玉米不包括其外皮;不包括甜玉米(sweet corn)	蔬果植物類、果醬和果凍食品中重金屬檢驗 方法(MOHWH0024.00)
	2.2.6	豆菜類(Legume vegetables),包括可供食用之豆莢	
	2.2.7	豆類(Pulses),包括以乾燥型態採收之乾豆類	
	2.2.8	花生(Peanuts)	
	2.2.9	蔓越莓(Cranberry)、醋栗(Currants)、接骨木果實(Elderberry) 及草莓(Strawberry)	
	2.2.10	其他未列之蔬菜及水果類(Othervegetables and fruits), 經去核、梗、冠、籽等非供食用之部位後適用	
	2.2.11	食用橄欖(tableolives)	
_	2.2.12	香草植物及香辛植物類	
	2.2.13	藻類	

鉛(2)

	$\Psi H (Z)$	
	食品	適用方法
2.2.14	菇蕈類	菇蕈類中重金屬檢驗方法 (MOHWH0025.00)
2.3 2.3.1	水產動物類 魚類	
2.3.2	貝類 (不含殼)	水產動物類、禽畜產品類及蜂蜜中
2.3.3	頭足類(去除內臟)	重金屬檢驗方法(MOHWH0028.00)
2.3.4 2.3.5	甲殼類之可食肌肉(包括附肢肌肉) 其他水產動物	
2.4	禽畜產品類	
2.4.1	牛、羊、豬、禽之肌肉	水產動物類、禽畜產品類及蜂蜜中
2.4.2 2.4.3	牛、羊、豬、禽之可食性內臟 蛋(不含殼)	重金屬檢驗方法(MOHWH0028.00)
2.5	食用油脂	今 田冲贴丑柳冲击手 人 扇捻醉 之 计
2.5.1	供食用之油及脂肪 脂肪抹醬及以脂肪為主要成分之混合抹醬(Fat spreads and	食用油脂及奶油中重金屬檢驗方法 (MOHWH0029.00)
2.5.2	blended spreads)	(11101111111111111111111111111111111111
2.6	乳品類	飲料及乳品中重金屬檢驗方法 (MOHWH0023.00)
2.6.1	乳及二級乳製品,經脫水處理之乳品,得依濃縮係數回推適用	
2.6.2	奶油(Butter)、乳脂(Cream)及其他僅以乳或乳製品之脂	食用油脂及奶油中重金屬檢驗方法 (MOHWH0029.00)

鉛(3)

	食品	適用方法	
2.7	飲料		
2.7.1	天然果蔬汁、還原果蔬汁、果漿(蜜),不包拮濃縮果 蔬汁以及以莓果或其他小型果實製得之果汁、果漿(蜜)	飲料及乳品中重金屬檢驗方法	
2.7.2	每果或小型果實之天然果蔬汁、還原果蔬汁、果漿 (蜜),不包括濃縮果蔬汁	(MOHWH0023.00)	
2.7.3	除本表第2.7.1、2.7.2項及濃縮果蔬汁以外之其他供直接 飲用之飲料		
2.8	包裝飲用水及盛裝飲用水	包裝(盛裝)飲用水及食用冰塊中重金屬檢驗方法(MOHWH0022.00)	
2.9	罐頭食品(Canned foods)		
2.9.1	罐頭蔬菜,蕓薹屬蔬菜罐頭不適用	罐頭食品中重金屬檢驗方法-鉛之檢驗	
2.9.2	罐頭水果	(TFDAH0010.00)	
2.9.3	其他罐頭食品(罐頭飲料類除外,另依2.7項類別適用)		
2.10	嬰幼兒食品		
2.10.1	嬰兒配方食品及較大嬰兒配方輔助食品		
	液狀型式販售者		
	粉狀型式販售者		
2.10.2	特殊醫療用途嬰兒配方食品及供幼兒食用之特殊醫療用途配方食品	重金屬檢驗方法總則(MOHWH0014.03)	
	液狀型式販售者		
	粉狀型式販售者		
2.10.3	嬰幼兒穀物類輔助食品及嬰幼兒副食品	T	
2.10.4	標示及販售供嬰兒及幼兒飲用之飲品,本表中第2.10.1、2.10.2及 2.10.3項之液狀形式產品除外	野 or	

鉛(4)

	食品	適用方法
2.11	食鹽	食鹽中重金屬檢驗方法(TFDAH0013.01)
2.12		包裝(盛裝)飲用水及食用冰塊中重金屬檢驗方法 (MOHWH0022.00)
2.13	蜂蜜	水產動物類、禽畜產品類及蜂蜜中重金屬檢驗方法 (MOHWH0028.00)
2.14	果醬(Jams)和果凍(Jellies)	蔬果植物類、果醬和果凍食品中重金屬檢驗方法 (MOHWH0024.00)

25

鎘(1)

	食品 Table 1	適用方法
3.1 3.1.1	製類 米 	
3.1.2 3.1.3 3.1.4	麥類(Wheat grains) 供直接食用之麥麩(wheat bran)及小麥胚芽(wheat germ) 其他穀類	穀類中重金屬之檢驗方法(TFDAH0012.00)
3.2	蔬果植物類	
3.2.1	葉菜類(Leafy vegetables),亦適用於蕓薹屬中之葉菜類	
3.2.2	蕓薹屬類(Brassica vegetables):包括結球甘藍(head cabbages)、球莖甘藍(kohlrabi)、花椰菜(cauliflower)、青花菜(broccoli)、抱子甘藍(brusselssprouts)子球部位。蕓薹屬中之葉菜類不適用本標準	
3.2.3	根菜及塊莖類(Root and tuber vegetables): 去除頂部及土壤後之完整商品,馬鈴薯需去皮後適用。本標準不適用於根芹菜(celeriac)及荷蘭防風草(parsnips)	
3.2.4	根芹菜及荷蘭防風草(Celeriac and parsnips)	蔬果植物類、果醬和果凍食品中重金屬檢驗方法
3.2.5	莖菜類(Stalk and stem vegetables): 大黃(rhubarb)僅適用於葉柄(leaf stems),朝鮮薊(globe artichoke)僅適用於花苞(flower head),芹菜(celery)及蘆筍(asparagus)須清除黏附的土壞後適用	
3.2.6	鳞莖類(Bulb vegetables):洋蔥、蒜頭(garlic) · 去除根部、 土壤和易脫落之外皮	
3.2.7	果菜類(Fruiting vegetables): 去除莖後適用。甜玉米(sweet corn)和新鮮玉米(fresh corn)之外皮部分不包括	
3.2.8 3.2.9	豆菜類(Legume vegetables),包括可供食用之豆莢 豆類(Pulses) ,包括以乾燥型態採收之乾豆類。不適用於黃豆	引 <u> </u>

鎘(2)

	食品	適用方法
3.2.10	黃豆(Soy beans)及花生(Peanuts)	*************************************
3.2.11	其他未列之蔬菜及水果類(Other vegetables and fruits), 經去核、梗、冠、籽等非供食用之部位後適用	蔬果植物類、果醬和果凍食品中重金屬檢驗方法(MOHWH0024.00)
3.2.12	香草植物及香辛植物類(Herbs and Spices)	
3.2.13	藻類	
3.2.14	菇蕈類	菇蕈類中重金屬檢驗方法(MOHWH0025.00)
3.3	水產動物類	
3.3.1	蜻(Scomber屬)、鮪鏗類(Thunnus屬、Euthynnus屬、Katsuwonus pelamis)、bichique (Sicyopterus lagocephalus)	
3.3.2	圓花鰹(Auxis屬)	
3.3.3	鯷魚(Engraulis屬)、劍魚/劍旗魚、沙丁魚(Sardina pilchardus)	水產動物類、萬备產品類及蜂蜜中重金屬檢驗万法(MOHWH0028.00)
3.3.4	其他魚類	
3.3.5	貝類 (不含殼)、頭足類 (不含內臟)	
3.3.6	甲殼類之可食肌肉 (包括附肢肌肉)	
3.3.7	其他水產動物	

鎘(3)

	食品	適用方法
3.4	禽畜產品類	
3.4.1	牛、羊、豬、禽之肌肉	小 支 劫
3.4.2		水產動物類、禽畜產品類及蜂蜜中重金屬檢驗方法(MOHWH0028.00)
3.4.3	牛、羊、豬、禽、馬之肝臟	72(1110111111110020.00)
3.4.4	牛、羊、豬、禽、馬之腎臟	
3.5		包裝(盛裝)飲用水及食用冰塊中重金屬檢驗方法 (MOHWH0022.00)
3.6	嬰幼兒食品	
3.6.1	嬰兒配方食品及較大嬰兒配方輔助食品 -以牛乳蛋白或蛋白水解物製造之配方食品	
3.6.2	嬰兒配方食品及較大嬰兒配方輔助食品 - 以大豆蛋白分離物單獨或混和牛乳蛋白製造之配方食品	重金屬檢驗方法總則(MOHWH0014.03)
3.6.3	嬰幼兒穀物類輔助食品及嬰幼兒副食品	
3.7	食鹽	食鹽中重金屬檢驗方法(TFDAH0013.01)

汞及甲基汞

		適用方法
4.1	米	穀類中重金屬之檢驗方法(TFDAH0012.00)
4.2	藻類	蔬果植物類、果醬和果凍食品中重金屬檢驗方法 (MOHWH0024.00)
4.3	食用油脂	
4.3.1	供食用之油及脂肪,不包括海洋生物來源提取之油脂	食用油脂及奶油中重金屬檢驗方法 (TFDAH0017.00)
4.3.2	海洋生物來源提取之油脂	
4.4	水產動物類	
4.4.1	鯊、旗、鮪、油魚	
4.4.2	鱈、鰹、鯛、鯰、鮟鱇、扁魚、烏魚、魟、帶魚、 烏鯧、鱘魚、金錢魚、鰻魚、金梭魚	今只由田甘王桧黔之法(̄) (MOUN/U0019 00)
4.4.3	其他魚類	食品中甲基汞檢驗方法(三) (MOHWH0018.00)
4.4.4	貝類(不含殼)、頭足類(不含內臟)	
4.4.5	甲殼類之可食肌肉(包括附肢肌肉)	
4.4.6	其他水產動物	
4.5	包裝飲用水及盛裝飲用水	包裝(盛裝)飲用水及食用冰塊中重金屬檢驗方法 (MOHWH0022.00)
4.6	食鹽	食鹽中重金屬檢驗方法(TFDAH0013.01)
4.7	食用冰塊	包裝(盛裝)飲用水及食用冰塊中重金屬檢驗方法 (MOHWH0022.00)

錫

	食品	適用方法
5.1	金屬罐裝食用油脂	金屬罐裝食品中重金屬檢驗方法 - 錫之檢驗 (MOHW0026.00)
5.2	金屬罐裝飲料	金屬罐裝食品中重金屬檢驗方法 - 錫之檢驗 (MOHW0026.00)
5.3	金屬罐裝嬰幼兒食品	
5.3.1	罐裝嬰兒配方食品及較大嬰兒配方輔助食品,不 包括乾燥及粉狀產品	金屬罐裝食品中重金屬檢驗方法 - 錫之檢驗 (MOHW0026.00)
5.3.2	罐裝特殊醫療用途嬰兒配方食品,不包括乾燥及 粉狀產品	
5.3.3	罐裝嬰幼兒穀物類輔助食品及嬰幼兒副食品,不 包括乾燥及粉狀產品	
5.4	其他金屬罐裝罐頭食品	金屬罐裝食品中重金屬檢驗方法 - 錫之檢驗 (MOHW0026.00)

銅

食品		適用方法
6.1	蛋類(不含殼)	蛋類中重金屬檢驗方法(TFDAH0014.00)
6.2	10、科纳(人们括大约朱裔)	飲料及乳品中重金屬檢驗方法 (MOHWH0023.00)
6.3	食鹽	食鹽中重金屬檢驗方法(TFDAH0013.01)

銻

	食品		適用方法	
_	7.1	取料理,以整致未一中吸/,吃(PFI)参考可要者	飲料及乳品中重金屬檢驗方法 (MOHWH0023.00)	
_	7.2	包裝飲用水及盛裝飲用水,以聚對苯二甲酸乙二酯 (PET)容器包裝者	包裝(盛裝)飲用水及食用冰塊中重金屬檢驗方法(MOHWH0022.00)	

敬請指教

.....

