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a b s t r a c t

Biomarker discovery has been increasingly important in the field of metabolomics for the

detection and understanding of diseases. Of the many biofluids available for metab-

olomics, urine is a preferred option as it is non-invasive to collect and contains a wide

range of metabolites reflective of the health status of the testing individual. However, urine

also contains many exogenous metabolites which are introduced through various sources

such as diet. This complicates the data interpretation when searching the metabolome for

disease-related endogenous metabolites. Since diet is difficult to control, this work aims to

study the acute effects of diet (particularly cow milk) consumption on the human urine

amine/phenol submetabolome by utilizing differential chemical isotope labeling (CIL)

liquid chromatography mass spectrometry (LC-MS). LC-MS analysis of 62 urine samples

collected before and after (1 hour and 2 hours) milk intake resulted in the detection of 4985

metabolites with an average of 3815 ± 206 (n ¼ 62) detected per sample. The work aims to

differentiate the exogenous “food” metabolites from the endogenous metabolite pool and

to determine any dietary effects from milk intake on the human urine metabolome.

Copyright © 2018, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Metabolomics has been increasingly used for disease

biomarker discovery research [1,2]. Among various biofluids

available for metabolome analysis, urine is most widely used

as it can be collected non-invasively in large quantities and

frequencies, containing a wide range of metabolites reflective

of health status [3]. However, the human urinemetabolome is

large and complex made up of interactions between intrinsic

genetic and external environmental factors [4]. The in-

dividual's exposome, referring to features such as environ-

mental exposures, gut microbiota, xenobiotics and food/diet

affects their overall metabolome [4,5]. Diet especially, is one of

the contributors of exogenous compounds affecting the urine
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metabolome, which can complicate the data interpretation

process when human endogenous metabolites are sought

after as potential biomarkers [6,7].

There are two ways of dealing with the issue of dietary

effect on urine metabolome. One way would be to control the

diet before urine collection. This would reduce the metab-

olomic variations caused by different diets from individual

subjects. However, in metabolomics studies, dietary control is

very difficult to carry out. In most clinical trials and longitu-

dinal studies where urine samples are collected and stored,

strict dietary control is often not done. In fact, even the type of

urine collected is not controlled; urine samples collected in a

study often include no-fasting urine as well as first void or

second void urine after overnight fasting. Using uncontrolled

urine samples has the advantage in that firstly, it is easier to

recruit study subjects with less compliance uncertainty. Sec-

ondly, without the need for dietary control, accessing a large

number of already collected samples in existing biobanks

may be a possibility. Lastly, with the overall larger sample size

made possible by including various types of urine, any bio-

markers discovered can be more readily deployed for clinical

use. Thus, an alternative way of dealingwith the dietary effect

issue is to determine the metabolites with their levels most

likely to be affected by diets. This follows a nutrimetabo-

nomics approach where metabolomics is used to investigate

the interactions of a food(s) on the metabolic system of an

individual as well as to determine any food-specific bio-

markers [4,8]. The inclusion of these diet-sensitive metabo-

lites in a biomarker panel requires extra caution at the

discovery stage to avoid artifacts influenced by diets. These

metabolites may not be chosen in a validation study, or if they

are chosen, dietary control needs to be taken into consider-

ation. To make this second approach effective in finding the

true biomarkers of a phenotype such as a disease, it will be

very important that only a small fraction of the urine metab-

olome is varied to a significant extent by diets. In this regard,

metabolomic coverage of a technique needs to be considered.

If a technique can detect several thousands of metabolites

covering many metabolic pathways, the presence of a small

percentage of diet-sensitive metabolites in the dataset

may not drastically reduce the chance of finding the true

biomarkers.

In this work, we apply a high-performance chemical

isotope labeling (CIL) liquid chromatography mass spectrom-

etry (LC-MS) metabolomics method to examine changes in

urine amine and phenol submetabolome profiles after con-

sumption of cow milk. In some parts of the world, such as

North America, milk encompasses one of the main food

groups. It is consumed multiple times a day through different

milk and milk-containing products from toddler to adulthood

[9]. Dansylation LC-MS has been shown to target the analysis

of the amine/phenol submetabolome with high coverage [10].

The labeling method adds a hydrophobic tag to polar metab-

olites allowing them to retain and efficiently separate on a

reversed phase (RP) column [10]. The addition of the dansy-tag

also allows the labeled metabolites to ionize better using ESI-

MS, providing an increased detection sensitivity [10]. Lastly,

the dansyl-tag can be synthesized to contain either 12C2- or
13C2 and therefore quantification of metabolites can be done

using differential CIL [10]. As a result, dansylation CIL LC-MS

can detect several thousands of metabolites in the amine/

phenol submetabolome, compared to a few hundreds of

metabolites (not features) in a conventional label-free LC-MS

method. In addition, using differential 12C-/13C-isotope label-

ing, accurate quantification can be achieved, compared to

semi-quantification using conventional LC-MS. Thus, the

technical benefits of offering higher coverage and better

relative quantification accuracy give us a greater chance at

revealing the dietary effects. This work used dansylation LC-

MS to profile the submetabolome of cow milk and human

urine (collected at different time points after milk intake),

which were then compared to reveal any metabolic

differences.

2. Material and methods

2.1. Chemicals and reagents

All the chemicals and reagents, unless otherwise stated, were

purchased from SigmaeAldrich Canada. For dansylation

labeling, the 12C-labeling reagent (dansyl chloride) was pur-

chased from SigmaeAldrich and the 13C-labeling reagent was

synthesized according to the method published previously

[10]. These reagents are also available from the University of

Alberta (mcid.chem.ualberta.ca).

2.2. Sample collection and processing

Informed consent was obtained from individual volunteers,

and ethics approval was obtained from the University of

Alberta in compliance with the University of Alberta Heath

Information policy. Fig. 1A illustrates the urine collection

process. Urine samples were collected from 6 healthy in-

dividuals, 2 females and 4 males. The short-term urine study

involved 4 urine samples per collection day. The first sample

was collected after 12 hours of overnight fasting and was

labeled as the 1st void sample. The next sample was collected

1 hour after the first and was categorized as the “before” milk

intake sample. After collection of the second sample the

individual consumed 250 mL of Dairyland brand 1% milk. The

third sample was collected 1 hour after which the milk was

consumed. This sample was labelled as “1 hour” after milk

intake. Lastly the fourth urine sample was collected 2 hours

after the initial milk consumption and labeled as such.

Each individual repeated the study on 3 separate days for

biological replicates. All individuals were able to drink water

throughout the duration of the collection period. The urine

samples were collected in 50 mL sterile Eppendorf tubes and

stored in the 4 �C fridge immediately after collection. Within

the same day, the urine samples were vortexed at 4000 rpm

for 10 minutes. The supernatant was filtered by 0.22 mm-

pore-sized Millipore filter (Millipore Corp., MA) and ali-

quoted into 0.6 mL vials. Equal volume aliquots of each

individual sample were taken into a 1.5 mL vial to generate

the pooled sample (to be used as the reference sample).

12.5 mL of urine sample was aliquoted out and diluted 4-fold

by adding 37.5 mL of water. The 50 mL diluted urine solutions

were then ready for dansylation and stored in the �80 �C
freezer until further use.
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2.3. Workflow and dansylation labeling

Fig. 1B shows the workflow of the differential 12C- and 13C-

dansylation LC-MS method for analyzing the metabolomes of

urine collected before and after milk consumption. Briefly, the

urine samples were first differentially labeled using dansyla-

tion. The individual samples were labeled with 12C-dansyl

chloride and a pooled sample was labeled with 13C-danysl

chloride. Labeled samples were quantified using LC-UV (see

below) and each 12C-labeled individual sample was mixed

with the equal mole amount of the 13C-labeled pooled sample

(reference sample) so that each labeled metabolite will show

up as a pair of peaks inMS. LC-MS analysiswas performed and

data processing was done to pick the metabolite peaks pairs

and determine their intensity ratios. The intensity ratio

between the light/heavy metabolite peaks is reflective of the

relative concentration of the metabolite in the individual

sample compared to the pooled sample. The same 13C-labeled

pooled sample was spiked into each 12C-labeled individual

sample and these the intensity ratio values measured from

Fig. 1 e Sample collection and processing: (A) urine collection process including 6 study participants and 4 collection time points

and (B) theworkflowof the differential chemical isotope labeling liquid chromatographymass spectrometry (CIL LC-MS)method.
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the separate analyses of all 12C-/13C-mixtures for a given

metabolite reflect the concentration differences among these

individual samples. In this way, comparisons between the

urine samples before and after milk intake (1 hour or 2 hours)

can be conducted using the metabolite peak pair ratios to

perform univariate and multivariate statistical analysis.

Dansyl chloride was used as the labeling reagent to react

mainly amine- and phenol-containing metabolites to form

dansyl-amine or dansyl-phenol derivatives [10]. 50 mL of a

processed urine sample was mixed with 25 mL of 250 mM so-

dium bicarbonate buffer and 25 mL of acetonitrile and the

solution was vortexed. 50 mL of 18 mg/mL 12C- or 13C-dansyl

chloride in acetonitrile was added, vortexed and incubated at

40 �C for 45min. To quench the excess dansyl chloride, 10 mL of

250 mM sodium hydroxide was added and the solution was

incubated at 40 �C for 10 min. Finally, 50 mL of 425 mM formic

acid was added to acidify the sample. Individual sampleswere

labeled with 12C-dansyl chloride and a pooled sample was

labeled with 13C-danysl chloride.

2.4. LC-UV quantification

For LC-UV, aWaters ACQUITYUPLC systemwith a photodiode

array (PDA) detector was used for the quantification of dansyl

labeled metabolites for sample amount normalization as

described earlier [11]. Briefly, 4 mL of each labeled sample

was injected onto a Phenomenex Kinetex C18 column

(2.1 mm � 5 cm, 1.7 mm particle size) for a fast step-gradient

run. Solvent A was 0.1% (v/v) formic acid in 5% (v/v) ACN,

and solvent B was 0.1% (v/v) formic acid in ACN. The gradient

started with 0% B for 1 min and was increased to 95% within

0.01 min and held at 95% B for 1 min to ensure complete

elution of all labeled metabolites. The flow rate used was

0.45 mL/min. The peak area related to the total labeled

metabolite concentration in the sample was integrated using

the Empower software (6.00.2154.003). Based on the quantifi-

cation results, the 12C-labeled sample and the 13C-labeled pool

were mixed in equal amounts.

2.5. LC-MS

All LC-MS experiments were performed on an Agilent 1100

HPLC system (Palo Alto, CA) connected to a Bruker Impact HD

quadrupole time-of-flight (QTOF) mass spectrometer (Bill-

ercia, MA) with an ESI source. A reverse phase column (Agilent

Eclipse Plus C18 column, 2.1 mm � 10 cm, 1.8 mmparticle size,

95�A pore size) was used for liquid chromatography separation

of labeled metabolites. Mobile phase A was made up of 5% (v/

v) acetonitrile and 0.1% (v/v) formic acid in water. Mobile

phase B consists of 0.1% (v/v) formic acid in acetonitrile. The

32-min gradient conditions were: 0 min (20% B), 0e3.5 min

(20e35% B), 3.5e18 min (35e65% B), 18e24 min (65e99% B) and

24e32 min (99% B). The column was then re-equilibrated at

20% B for 15 min. The flow rate was 180 mL/min.

2.6. Data processing, statistical analysis and metabolite
identification

Bruker DataAnalysis software 4.2 was used to extract MS

spectral peaks. An in-house software tool, IsoMS, was used

to process the raw data generated from multiple LC� MS

runs by peak picking, peak pairing, peak-pair filtering, and

peak-pair intensity ratio calculation [12]. The same peak

pairs detected from multiple samples were then aligned to

produce a CSV file that contains the metabolite information

and peak ratios relative to a control (i.e., a pooled sample).

A zero-fill program was then used to find missing peak pairs

from the raw mass spectral data, filling in the missing

values [13]. Peak ratios were further optimized through the

use of IsoMS-Quant [14]. Volcano plots were generated by

Origin 2016 Graphing and Analysis (OriginLab Corporation,

Northampton, USA).

Positive metabolite identification was performed based

on mass and retention time matching to the dansyl stan-

dards library consisting of 273 unique standards with 315

entries [15]. This library with information on MS, MS/MS

and ion chromatogram for each dansyl labeled standard is

freely accessible at www.MyCompoundID.org. Putative

identification was done based on accurate mass match

to the metabolites in the human metabolome database

(HMDB) (8021 known human endogenous metabolites) and

the Evidence-based Metabolome Library (EML) (375,809

predicted human metabolites with one reaction) using

MyCompoundID [15]. The mass accuracy tolerance window

was set at 8 ppm and the retention time tolerance window

set to 20 s for the definitive identification searches and for

the putative searches a mass tolerance of 0.005 Da was

used.

3. Results and discussion

3.1. Cow milk metabolome

The cow milk metabolome was first determined as pre-

viously described [16]. Briefly, a milk sample was divided

into two aliquots, one labeled with 12C-dansyl chloride

(DnsCl) and another labeled with 13C-DnsCl. After label-

ing, equal mole amounts were taken for mixing. The
12C-/13C-mixture was analyzed using LC-MS. Fig. 2A

shows a representative base-peak ion chromatogram of a
12C-/13C-labeled cow milk. Many chromatographic peaks

were detected across the entire separation time window,

illustrating the complexity of the milk submetabolome

(amines/phenols).

The IsoMS programwas used to extract the peak pairs from

the LC-MS data. It only retained one peak pair from [MþH]þ of

a 12C-/13C-labeled metabolite by filtering out other redundant

peaks such as dimers. There were a total of 7104 peak pairs

detected in cow milk with an average of 4573 ± 505 (n ¼ 108)

peak pairs per sample. 3820 were commonly detected in more

than 80% of the samples. Among the 3820 peak pairs, 70 me-

tabolites were positively identified by searching the dansyl

standard library (Supplemental Table S1). By using accurate

mass search against HMDB and EML libraries, 954 and 2987

peak pairs were matched to one or a few chemical structures,

respectively (Supplemental Tables S2). It should be noted that

the cow milk metabolites were searched against human

metabolites (HMDB) due to the fact that equivalent resources

were not available.
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3.2. Human urine metabolome

All individual urine samples were labeled with 12C-dansyl

chloride while the pooled sample (generated by taking equal

aliquots of all samples) was labeled with 13C-dansyl chloride.

After labeling, each individual and pooled sample was quan-

tified by LC-UV and the concentration of labeled metabolites

was determined. The samples were then mixed in equal mole

amounts of 12C-individual sample and 13C-pooled sample and

analyzed by LC-MS as single injections. Fig. 2B shows a

representative base-peak ion chromatogram of a 12C-/13C-

labeled urine sample. As Fig. 2 shows, the chromatograms of

milk and urine are significantly different.

LC-MS analyses of a total of 62 urine samples resulted in

the detection of a total of 4985 peak pairs or metabolites with

an average of 3815 ± 206 (n ¼ 62) peak pairs per sample.

There were 3982 urine metabolites commonly detected in

more than 50% of all urine samples consisting of several

groups. Among them, 98 could be positively identified

(Supplemental Table S3) while 1599 and 3686 could be

putatively matched to the HMDB and EML libraries, respec-

tively (Supplemental Tables S4).

3.3. Multivariate analysis of the urine metabolome after
milk intake

The PCA plots of the urine metabolome data set from samples

collected before and aftermilk consumptionwith andwithout

QC samples included are shown in Fig. 3A,B, respectively. In

Fig. 3A, the QC samples cluster tightly together indicating

good technical reproducibility. Fig. 3B,C are the unsupervised

PCA and supervised PLS-DA scores plots of the urine samples

grouped by time after milk intake. From the PCA plots we see

no clear distinction between the urine samples before and 1e2

hours after milk intake. The PLS-DA plot shows a slight visual

separation between the before and after milk intake urine

samples (1 hour and 2 hours) with an R2 value of 0.9321 and a

Q2 value of 0.0317. While the R2 value (representative of

goodness of fit) is good (close to 1), the Q2 value (predictability

value) is below the separation-threshold of 0.5. As well, the

model generated does not pass the 100-permutations test and

thus the separation observed between urine samples before

and after milk intake was rejected.

This result does not simply mean that drinking cow milk

has no effect on the human urine metabolome. It does, how-

ever, suggest that the short-term urine metabolome effects of

milk intake may be minimal and not as significant in relation

to other variables. In this study, the only variables controlled

were the 12 hours fast (prior to milk intake), urine collection

times and the consumption of cowmilk. There aremany other

individual-dependent or even day-dependent external factors

that may affect the results of this study such as their previous

meal, intrinsic metabolism, gastrointestinal uptake, gut

microbial composition/activity, glomerular filtration rate and

tolerance to milk and milk products, etc [7]. To investigate

this, an interactive principal component analysis (iPCA) plot

(which is essentially a 3-dimensional PCA) was generated

using the urine data grouped by collection day and individual

as shown in Fig. 4A. The colors refer to each individual and the

shapes refer to the collection day (note that the experiment

was repeated on 3 different days). Colored ellipses were

manually drawn in to group the samples collected within the

same day (same shape) for each individual (same color) in

Fig. 4B as the groupings may be difficult to see due to the

overlapping of data points in Fig. 4A. From Fig. 4B, we see that

there is significant separation between the samples from

different individuals (colors). For some individuals (yellow,

green and grey), their urine samples collected on different

days (shapes) show little separation and cluster well together,

while for others (blue, red and orange) their urine shows

significant inter-day variability (Fig. 4B). From this plot, we see

evidence of both inter-individual and inter-day variations in

the urine metabolome that are seemingly much larger than

the changes caused by milk intake. To further validate this

finding, the urine dataset was regrouped by collection day and

individual, and multivariate analysis was performed.

Fig. 5A,C shows the PLS-DA scores plots of the urine data-

set grouped by collection day and individual, respectively (the

PCA plots are included in Supplemental Figure S1). Metab-

olome differences were observed between urine samples

collected on different days (Fig. 5A) with R2 ¼ 0.9892 and

Q2 ¼ 0.8908. As well, significant separations were also

Fig. 2 e Representative base-peak ion chromatograms of

labeled (A) milk and (B) urine.
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observed between urine metabolomes of different individuals

with R2 ¼ 0.9956 and Q2 ¼ 0.9657. Both models generated

also passed the 100-permutations test with p-values of 0.01

and < 0.01, respectively, which are lower than the 0.05 cut-off

(Fig. 5B,D). These results indicate a statistically significant

difference in the urine metabolomes of different individuals.

As well, within the same individual, there may also be some

inter-day variability in the urinemetabolome, however, not as

large as the inter-individual differences. With this finding, the

urine metabolome dataset was re-grouped by individual, and

analysed independently for the remainder of this work.

3.4. Univariate analysis of the urine metabolome

During the metabolism of food(s) a milk metabolite can be

metabolized into a compound that is endogenously found in

the human urine metabolome [6]. Therefore, univariate

analysis was used to determine metabolites with significant

concentration changes after drinking milk. Firstly, the com-

mon metabolites between the 3 different collection time

points were determined (before, 1 hour and 2 hours after

milk). Binary comparisons between an “after milk” group and

the “before milk” group were then conducted. First, a t-test

Fig. 3 e Multivariate analysis of the urine data sorted by collection time: the PCA scores plot (A) with QC and (B) without QC,

the PLS-DA scores plot (C) and the 100-permutations test results (D).
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was used to calculate a p-value for each metabolite. Secondly

the fold change for the metabolite was calculated by taking

the average of the peak ratios for the “after milk” group (be it 1

hour or 2 hours) and dividing it by the average peak ratio of the

“before milk” group. The significantly changed metabolites

between “before” and “after” milk intake was identified and

plotted on Volcano Plots for each individual with the following

criteria: p-value < 0.05, fold change (FC) > 1.5 and FC < 0.67

(refers to significantly increased and decreased, respectively).

Supplemental Figure S2 A-F shows the plots of the signifi-

cantly changed metabolites 1-hour-after-milk intake and

Fig. S2 G-L shows the plots for the metabolites changing 2-

hours-after-milk intake. For volunteer #1, the individual had

195 and 72 significantly increased and decreased metabolites,

1-hour after milk intake. 2-hours after intake the numbers

were 116 and 69, increased and decreased, respectively

(Figs. S2A and G). For volunteer #2, they had 18 increased and 1

decreased metabolites at 1-hour after milk and 3 increased

and 21 decreased metabolites at 2-hours after milk intake

(Figs. S2B and H). Volunteer #3 had 60 increased and 6

decreased metabolites after 1-hour of drinking milk (Fig. S2C).

Those numbers changed to 21 increased and 20 decreased 2-

hours after milk (Fig. S2I). Volunteer #4 had 35 increased and

10 decreased after 1-hour post milk intake and had 56

increased and 33 decreased 2-hours post-milk (Figs. S2D and

J). Volunteer #5 had 2 increased metabolites 1-hour post-

milk intake and 19 decreased (Fig. S2E). 2-hours post milk

intake those numbers changed to 0 increased and 24

decreased (Fig. S2K). Lastly, volunteer #6 had 70 increased and

0 decreased metabolites after 1-hour of consuming milk

(Fig. S2F). 2-hours after milk intake those numbers were 63

increased and 5 decreased (Fig. S2L). Overall there seems to be

a very small change in the concentrations of urinemetabolites

(<200 significantly changed metabolites) 1 and 2 hours after

drinking 250 mL of cow milk.

3.5. Determination of common metabolites between the
milk and urine metabolome

In order to determine any exogenous milk metabolites

excreted into the urine, the dataset from the urine study was

merged with the cow milk profiling dataset obtained from the

previous studymentioned in Section 3.1 [16]. This was done by

combining the data (after IsoMS peak-pair filtering and pick-

ing) and aligning the metabolites by matching retention time

(RT) andmass (m/z) using a RT tolerance of 20 seconds andm/

z tolerance of 8 ppm, followed by zero-filling ofmissing values

and optimization of peak ratios by IsoQuant (as mentioned in

Section 2.6). The milk metabolites found consistently across

80% of all milk samples was compared with the urine me-

tabolites before, 1 hour and 2 hours after milk intake.

Because the sample type in the two sample sets was

different (milk vs. urine) and the pooled sample used for each

sample set (as reference) was also different (milk pool vs.

urine pool), the concentrations of each metabolite could not

be compared between the two sample sets. However, we could

determine the metabolites unique to milk or urine or in

common with both. Firstly, we determined the number of

unique urine metabolites to each collection time point

(Supplemental Figure S3 AeF). These unique metabolites

include both endogenous urine and exogenous milk metabo-

lites. Thenwe compared the uniquemetabolites for each time

point with the milk metabolome and determined the number

of unique urine metabolites found in common with milk

(Figure S3 GeL). As an example, Fig. S3A shows the Venn di-

agram for volunteer #1. As the purpose of this study is to see

the effects of milk on the urine metabolome, we only focused

on the unique metabolites observed in the 1 hour, 1 and 2

hour, and 2 hours after milk intake urine samples. The

numbers of those metabolites observed is bolded in Fig. S3A.

There are 70 metabolites unique to the 1-hour-after-milk

urine samples, 156 metabolites unique to the 2-hours-after-

milk urine samples and 563 metabolites found in both the

1-and-2-hours-after-milk urine samples. The above-

mentioned metabolites were then compared with the milk

metabolites obtained from the milk profiling set. Fig. S3G

shows the distribution of metabolites (1 hour, 2 hours and

both 1 and 2 hours after milk intake) that are in common with

milk (shown in red) or unique to urine (shown in black). Of the

70 metabolites unique to the 1-hour-after-milk samples, 22 of

them were in common with milk. 48 of the 156 unique me-

tabolites in the 2-hours-after-milk samples were in common

with milk. Lastly, 104 metabolites out of the 563 unique me-

tabolites to the 1-and-2-hours-after samples were matched

Fig. 4 e Interactive principal component analysis (iPCA) with groupings by individual (colored) and collection day (shape)

without (A) and with (B) manually inserted ellipses for easier observation of groupings.
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with milk metabolites. This evidence suggests a possibility

that these urine metabolites, detected only after milk intake

and found in common with the milk metabolome, could have

come from the consumption of milk itself and was excreted

into the urine unchanged. These metabolites will be referred

to as “possible” milk-related metabolites from here on.

3.6. Determination of potential milk-related biomarkers
across participants

As there were little to no overlap/commonality between the

“possible” milk-related metabolites excreted into the urine be-

tween the study participants in the same time points, a broader

criterionwasestablished. Simply, all the “possible”milk-related

metabolites detected in each individualwere comparedwith no

group distinction between when they were excreted. If a

particular “possible”milk-relatedmetabolite was detected in at

least 50% of the participants (regardless of what time point) it

was included as a potential milk-related biomarker. 50 metab-

olites were found unique to the “after milk intake” urine sam-

ples and in common with the cow milk metabolome across

�50% of the participants. Supplemental Figure S4 shows the

distribution of the 50 metabolites and is color coded by excre-

tion timepoint (1 hour, 2 hours or both). From this figure, we see

no pattern of excretion for these “possible” milk-related me-

tabolites in terms of time after consumption across study

Fig. 5 e PLS-DA scores plot and its respective permutation test results of the acute milk effect on urine data sorted by: (AeB)

collection day and (CeD) individual.
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participants. As well, the number of overlapping “possible”

milk-related metabolites between individuals was relatively

small (only 50metabolites across�50% of the participants). The

putative identification of the 50-potential milk-related metab-

olites is included in Supplemental Table 5.

3.7. Acute changes in the human urine metabolome due
to moderate milk consumption

In comparison to the total number of metabolites observed in

the urine ormilkmetabolome, the number of overlapped peak

pairs (possibly milk-related) determined were much lower

(�110 metabolites vs > 3000 metabolites). As well, the number

of metabolites with significantly changed concentrations

was small, i.e., <5% of the metabolome. This was, in a way,

expected. Past studies have found that dietary effects on the

metabolome are less pronounced than say, a drug effect and

can be easily masked by other variables such as inter-

individual and inter-day variation (within the same individ-

ual) [4]. As well, there is no observed pattern to the changes in

the urine amine/phenol submetabolome across all individuals

thus demonstrating the unique individual responses to milk

consumption. It should be noted that the effects of food

consumption are typically more complex since food is not

comprised of just one or few component(s) but rather many

components (food and non-food related) that may be involved

in various metabolic pathways [17e19]. Milk, for example, is

comprised of a variety of proteins, lipids, sugars, vitamins and

minerals [9]. Also, the number of “possible” milk-related me-

tabolites excreted out into the urine refers to any milk me-

tabolites that have not undergone bio-transformations during

the ingestion, digestion, absorption and elimination process.

Majority of the food-related metabolites excreted in human

biofluids such as urine are quite chemically different from the

parent compound ingested due to transformations in the

mouth, stomach, liver, pancreas and intestines [6]. Food

metabolites are transformed via phase I and II reactionswhich

add chemical moieties to the metabolites for easier elimina-

tion (make them more polar for urine excretion) [6,20]. A

limitation to our method, unfortunately, is that it cannot

account for bio-transformed milk metabolites.

4. Conclusions

We have designed a study to examine the effects of moderate

milk intake on urine sample analysis. From a technological

viewpoint, the dansylation CIL LC-MS method utilized in this

work illustrates the ability to detect a large number of metab-

olites in urine and milk. It is also able to detect changes in

concentrations of urine metabolites after moderate milk con-

sumption.Aswell, thisCIL LC-MSmethodwasused to compare

the metabolome datasets of two different samples (urine and

milk) in order to detect milk-related biomarkers excreted

unchanged into the urine, 1 and 2 hours after consumption.

From a biological viewpoint, it appears that a moderate

consumption of cow milk does not result in significant

changes to the urine amine/phenol submetabolome. Our

method revealed a larger inter-individual and inter-day vari-

ability in the human urine metabolome; however, it was still

capable in detecting the subtle and individually unique re-

sponses to milk intake. A small number of urine metabolites

(<5% of themetabolome) affected bymilk intakewas detected,

indicating a homeostasis of the submetabolome that is not

easily perturbed by the consumption of a normal level of milk

(one glass) over a short period of time (2 hours). Lastly, 50

milk-related metabolites were observed across �50% of study

participants that may be potential biomarkers of milk intake.

In future work, we need to apply a similar CIL LC-MS approach

to study the other chemical-group-based submetabolomes

such as carboxylic acids, carbonyls, and hydroxyls. In this

way, the human urine metabolome in its near entirety can be

determined to investigate the overall short-term effects of

milk consumption.
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