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a b s t r a c t

Benzo [a]pyrene (BaP) is a model compound for the study of polycyclic aromatic hydro-

carbon (PAH) carcinogenesis. Upon metabolism, BaP is metabolized to the ultimate

metabolite, BaP trans-7,8-diol-anti-9,10-epoxide (BPDE), that reacts with cellular DNA to

form BPDE-dG adducts responsible for BaP-induced mutagenicity, carcinogenicity, and

teratogenicity. In this study, we employed our developed LC-MS/MS method to detect and

quantity BPDE-dG adducts present in 42 normal human umbilical cord blood samples and

42 birth defect cases. We determined that there is no significant difference in the level of

BPDE-dG formation between the normal and birth defect groups. This represents the first

time to use an LC-MS/MS method to quantify BPDE-dG in human umbilical blood samples.

The results indicated that under experimental conditions, BPDE-dG adducts were detected

in all the human umbilical cord blood samples from the normal and birth defect groups.

Copyright © 2019, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous

carcinogenic environmental pollutants present in the envi-

ronment, e.g. air, water, soil and sediment [1e5]. PAHs are

present in tobacco smoke in high concentrations, in foods,

and occupational exposure [6,7]. PAHs induce malignant tu-

mors in rodents, including mammary gland, lung, bladder,

and skin [8e10]. International Agency for Research of Cancer

(IARC) classified a group of PAHs as Group 1 human carcino-

gens, Group 2A probably carcinogens, or Group 2B possible

human carcinogens [2,3]. It has also been reported that
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consumption of PAHs in foods increases risks of colorectal

adenoma and pancreatic cancer [2,3,11e14].

Benzo [a]pyrene (BaP) is amodel compound for the study of

PAH carcinogenesis. Carcinogenic PAHs, including BaP,

require metabolic activation to exert mutagenicity, teratoge-

nicity, and carcinogenicity. BaP is metabolized to form the

ultimate metabolite, trans-7,8-dihydroxy-anti-9,10-epoxy-

7,8,9,10-tetrahydrobenzo [a]pyrene (BPDE). BPDE can bind

with cellular DNA to form BPDE-DNA adducts, with 10-

(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-

tetrahydrobenzo [a]pyrene (BPDE-dG) as a major DNA adduct

[5]. Therefore, development of sensitive and reliable analytical

methods to identify and quantitate BPDE-dG adducts in

human samples is required for molecular epidemiological

studies [15e18].

Molecular epidemiology studies have evidenced that the

fetus is more susceptible than the adults to the toxic effects of

PAHs and other toxicants [19e22]. The previous studies have

suggested that the developing fetus may be 10 times more

susceptible than the mother to PAH-induced DNA damage

[20]. Perera et al. measured PAH-DNA and other bulky aro-

matic adducts in umbilical cord white blood cells using the
32P-postlabeling assay [20]. They determined the association

between this molecular dosimeter and behavioral attention

problems in childhood and the results suggested that PAH

exposure, measured by DNA adducts, may adversely affect

child behavior, potentially affecting school performance [20].

In this study, we measured the BPDE-dG adducts in the

DNA of umbilical cord white blood cell samples from a subset

of birth cohort. A total of 84 umbilical cord white blood cell

samples, with 42 birth defect cases and 42 normal cases, were

studied.

2. Materials and methods

2.1. Chemicals

[15N5]-20-Deoxyguanosine was purchased from Cambridge

Isotope Laboratories (Andover, MA, USA). Calf thymus DNA,

deoxyribonuclease I from bovine pancreas (DNase I),

phosphodiesterase I from Crotalusadamanteus venom

(phosphodiesterase I), phosphatase, alkaline from Escher-

ichia coli (alkaline phosphatase) were obtained from

SigmaeAldrich Corp. (St. Louis, MO, USA). BPDE, synthe-

sized by reaction of BaP trans-7,8-dihydrodiol with DDQ

[23,24], was kindly provided by Dr. Peter P. Fu of the Na-

tional Center for Toxicological Research (NCTR). All sol-

vents were HPLC grade.

2.2. Umbilical cord white blood samples

Umbilical cord white blood samples were collected between

November 2013 and June 2014 from pregnant women enrolled

from the local hospital of the Shenqiu county, Henan province

(Huaihe River Basin). A total of 84 human umbilical cord blood

samples, including 42 birth defect cases and 42 normal cases,

were randomly selected from a subset of birth cohort. Before

umbilical cord blood was obtained, the pregnant women were

required to sign a consent form after receiving a detailed

explanation of the study. Approximately 25e30 mL of umbil-

ical cord blood was collected in SST coagulation tubes at the

time of delivery, and the centrifuged plasma samples were

stored at �80 �C before use. This study was reviewed and

approved by the Ethics Committee of the National Institute for

Occupational Health and Poison Control, Chinese Center for

Disease Control and Prevention.

2.3. DNA isolation from umbilical cord blood

Umbilical cord white blood cell DNA preparation were

collected in vacuum blood collection tube with EDTA-K2

(Becton, Dickinson and Company, USA) (0.05 M sodium cit-

rate, pH 7.0), cooled to 4e8 �C and followed by centrifugation

(2900 rpm, 20min). Buffy coat (PBMC, mainly leukocytes) and

plasma fractions were separated and stored at �80 �C for

further analyses. The isolation of genomic DNA from buffy

coats was achieved using the DNA Blood Mini Kit (Qiagen,

Hilden, Germany) according to the manufacturer's protocol

except for the modification of the supplied pH to 7.4 and

adjusting the NaCl concentration in the elution buffer to

1.4 M.

2.4. Synthesis of BPDE-dG and [15N5]BPDE-dG
standards

BPDE-dG was synthesized followed the protocol reported

earlier by Beland et al. with minor modifications [25]. Briefly,

BPDE (3.0 mg) was dissolved in 5.0 mL THF and added 18mg of

20-deoxyguanosine (dG) dissolved in 1.0 mM TriseHCl buffer

(pH 6.8). Themixturewas incubated 37 �C for 4 h and extracted

sequentially with 10 mL of water saturated n-butanol and

washed with 10 mL of n-butanol saturated water three times

respectively. The n-butanol extracts were evaporated and the

residue was dissolved in methanol and purified by reverse

phase HPLC using linear gradient program with acetonitrile

(A) and 0.1% formic acid (B) as follows: 0e5min, 5%A isocratic;

5e30 min, 5%e35% A in B; 30e35 min, 35%e90% A in B;

35e40 min, 90% A isocratic; 40e41 min, 90%e5% A in B;

41e50 min, 5% A isocratic. The flow rate was 0.3 mL/min. The

purified BPDE-dG was quantitated by UV spectrometry using

the absorption coefficients as an external standard [26]. [15N5]

BPDE-dG was synthesized by the reaction of BPDE with [15N5]

20-deoxyguanosine ([15N5]dG) followed by same procedures

described above as an internal standard (I.S.). The purified

[15N5]BPDE-dG was quantitated by UV spectrometry using the

absorption coefficients [26].

2.5. LC-MS/MS analysis for BPDE-dG adduct in
umbilical cord white blood cell samples

LC-MS/MS analysis of BPDE-dG adduct was conducted

following the protocol reported earlier with minor modifica-

tions [25]. Briefly, umbilical cord white blood cell DNA (20 mg)

was added 10 mL DNase I (0.5 unit/mL) and 10 pg of [15N5]BPDE-

dG as I.S. for correcting recovery of BPDE-dG adduct. The
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mixture was incubated at 37 �C for 3 h. After incubation, the

mixture was added 10 mL phosphodiesterase I (0.0002 unit/mL)

and 10 mL alkaline phosphatase (0.004 unit/mL). After incuba-

tion at 37 �C for 4 h, the mixture was extracted by adding

500 mL of water-saturated n-butanol three times. The n-

butanol extracts were evaporated and dissolved in 50 mL of

methanol and injected into LC-MS/MS for BPDE-dG adduct

analysis. The liquid chromatography handling system con-

sisted of a Thermo TSQ Quantum Access Max module

(Thermo Fisher, Milford, MA, USA) connecting with a Hypersil

Gold 1.9 mm C18 column (100 � 2.10 mm, Thermo Fisher,

Milford, MA, USA). Each sample was eluted at 0.35 mL/min

using a linear program with acetonitrile (A) and 0.1% formic

acid (B) gradient as follows: 0e1 min, 5% A isocratic;

1e1.5 min, 5e20% A in B; 1.5e20 min, 20e28% A in B;

20e21 min, 28e90% A in B; 21e22 min, 90% A isocratic;

22e22.5 min, 90-5% A in B; 22.5e24 min, 5% A isocratic. A

Thermo TSQ Access Max mass spectrometer (Thermo Fisher,

Milford, MA, USA) equipped with an HESI interface, was used

with a spray voltage of 3500 v, a vaporizer temperature of

300 �C and a capillary temperature of 270 �C. Nitrogen was the

sheath gas (45 arb), aux gas (10 arb), and collision gas (0.12mL/

min). Positive ions were acquired in the multiple reaction

monitoring (MRM) mode (collision energy, 10 eV).

2.6. Standard calibration curve

Standard curve was generated by plotting the amounts of

standard compounds against peak area. Each sample was

tested at 10 mL injection volume containing 10 pg [15N5]BPDE-

dG internal standard. The calibration curve was linear over

the concentration range of 1e500 pg BPDE-dG. The best linear

fit and least variability for the calibration curve was achieved

with aweighting factor of 1/X, with the correlation coefficients

(r2) above 0.99 (Fig. 1).

3. Results

3.1. Analysis of BPDE-dG and [15N5]BPDE-dG adducts

Following the method of Beland et al. with modification [25],

reaction of BPDE in THF with 20-deoxyguanosine dissolved in

TriseHCl buffer (pH 6.8) at 37 �C for 4 h resulted in the for-

mation of four enantiomeric BPDE-dG adducts, with the

retention times at 10.56, 11.20, 11.52, and 11.84 min, respec-

tively (Fig. 2). The structures of these enantiomeric BPDEdG

adducts are cis-(þ)-anti-BPDE-dG; trans-(�)-anti-BPDE-dG; cis-

(�)-anti-BPDE-dG, and trans-(þ)-anti-BPDE-dG, respectively

(Fig. 3). These BPDE-dG adducts had a protonated molecule

[(MþH)þ] atm/z 570 (data not shown). The full scan LC-MS/MS

spectrometric analysis indicated that these adducts all had

identical fragment ions pattern, with fragment ions atm/z 454,

m/z 303, m/z 285, m/z 257 and m/z 152 (Fig. 4A). The mass

spectrum of [15N5]BPDE-dG shown in Fig. 2B also exhibited

four chromatographic peaks, with the retention times at 10.58,

11.21, 11.53, and 11.84 min, respectively.

Product ion analysis of BPDE-dG gave fragments consistent

with sequential loss of deoxyguanosine (dG) (m/z 303), loss of

H2O (m/z 285), and loss of CO (m/z 257) as well as the fragment

indicative of guanine (m/z 152) (Fig. 4A). The structures of the

fragment ions from BPDE-dG are shown in Fig. 5. Similarly, in

the full scan mass spectrum of [15N5]BPDE-dG, four chro-

matographic peaks were also observed (Fig. 4B). The fragment

ion at m/z 459 is the loss of a ribose [(M-ribose)þ].

3.2. Response curve of LC-MS/MS analysis

The substrate concentration-dependent response curve of

LC-MS/MS analysis was obtained by adding 2.5, 5, 10, 15, 20

and 25 pg of BPDE-dG standards in calf thymus DNA samples

and each added 10 pg of [15N5]BPDE-dG as internal standards.

After incubation and enrichment, these single calf thymus

DNA samples were then subjected into LC-MS/MS (data not

shown). There is a linear correlation between the quantity of

BPDE-dG and area ratios of BPDE-dG/[15N5]BPDE-dG), within

the range studied. It was determined that the limit of

detection (s/n ¼ 3) of BPDE-dG is 2.7 BPDE-dG/109 dG. BPDE-

dG in an aliquot equivalent about 10 mg of DNA could be

detected.

3.3. Reproducibility of LC-MS/MS method

The LC-MS/MS method was validated with respect to intra-

assay and inter-assay by adding 5 pg and 10 pg of [15N5]

BPDE-dG as internal standards in calf thymus DNA. The calf

thymus DNA samples were injected into LC-MS/MS at the

same time for the intra-assay. The relative standard deviation

(RSD) was 13.05%. For the inter-assay, the calf thymus DNA

samples were injected into LC-MS/MS with a 24 h interval,

RSD was 23.1%.

3.4. Recovery of LC-MS/MS method

The recovery of LC-MS/MS method was achieved by adding

5 pg and 10 pg of [15N5]BPDE-dG in calf thymus DNA,

respectively. These single DNA samples were injected into

LC-MS/MS for the calculation of the recovery. The recovery of

[15N5]BPDE-dG with adding 5 pg ranged from 74.6% to 89.6%

and the mean recovery was 83.7% ± 6.1, RSD was 9.54%. The

recovery of [15N5]BPDE-dG with adding 10 pg ranged from

80.6% to 96.4%, mean recovery was 88.3% ± 5.4, RSD was

8.96%.
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3.5. Analysis of BPDE-dG adduct in umbilical cord white
blood cell DNA samples

Analysis of umbilical cord white blood cell DNA samples was

conducted by LC-MS/MS method, with 84 human umbilical

cord blood samples, including 42 birth defect cases and 42

normal cases, randomly selected from a subset of birth cohort.

The results are summarized in Table 1. A representative

autoradiogram of BPDE-dG detected in human umbilical cord

blood samples is shown in Fig. 2C. The results indicate that

there is no significant difference in the level of BPDE-dG ad-

ducts formed from the normal and the birth defect groups.

4. Discussion

PAHs are mutagenic, teratogenic, and carcinogenic wide-

spread environmental pollutants [1e7]. BPDE, the ultimate

metabolite of BaP, covalently bound with DNA to form four

enantiomeric BPDE-dG adducts in vivo (Fig. 2). The biological

activities of trans-BPDE-dG enantiomers are extensively

studied than the cis enantiomers [27,28]. Several analytical

methods, including 32P-postlabeling, immunoassay, and LC-

MS/MS-based methods, have been used for the analysis of

BPDE-DNA adducts [29e32]. Among which, the best analyt-

ical method is the LC-MS/MS. The recent improvements in

LC-MS/MS method have been utilized in high-throughput

applications for BPDE-DNA adducts analysis [33e35]. To

analyze BPDE-dG adducts in small amounts in the umbilical

cord white blood cell DNA, we developed an ultrasensitive

LC-MS/MS method that is highly sensitive. The improved

method is based on the effective purification and enrichment

of BPDE-dG adducts in human umbilical cord blood samples

followed by solvent extraction to efficiently enrich BPDE-dG
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adducts in cord blood samples. The sensitivity of this

developed method can be applied to use human cord blood

cell DNA in a quantity as low as ~10 mg of DNA. For improving

the reliability of the method, [15N5]BPDE-dG was added to

each human umbilical cord blood sample as internal stan-

dards allowing the good correction of the recovery.

Our study represents the first time to use the LC-MS/MS

method to quantify BPDE-dG adducts in human umbilical

cord blood samples. As the data shown in Table 1, the levels

of BPDE-DNA adducts present in 42 normal human umbilical

cord blood samples and the 42 birth defect cases are gener-

ally close, with the adduct level in only three birth defect

cases a little higher than all the others. Since only one

measurement was conducted for each sample, it is

reasonably to conclude that there is no significant difference

in the BPDE-dG formation between the normal and the birth

defect groups.

It is important to point out that all the 82 human umbilical

cord blood samples, from both normal and birth defect

groups, contained BPDE-dG adducts. Thus, it is important to

determinewhether this is a general phenomenon, or a specific

case. This warrants further investigation.
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Table 1 e Detection of BPDE-DNA adduct in human umbilical cord blood by LC/MS analysis.

Case ID
(healthy)

BPDE-dG/108

nucleotides
Case ID

(birth defect)
Type of defect BPDE-dG/108

nucleotides

0737002 0.27 0409019 pigmented nevus 0.27

1118001 0.27 0712004 cleft lip 0.27

1701001 0.27 1020001 melanoma 0.27

2004001 0.27 1908004 umbilical hernia 0.27

2023003 0.27 0523005 hemangioma 0.84

0408006 1.04 0524005 fissura auris congenita 1.04

0409002 0.98 0529007 locus coeruleus buttock 0.96

0409003 1.01 0536002 pigmented nevus 0.84

0523001 0.84 0702003 pigmented nevus 0.96

0524002 1.04 0718011 fissura auris congenita 0.96

0529001 0.82 0724004 polydactyly 0.93

0529002 0.87 0913005 strephexopodia 0.96

0536003 0.93 1009001 fissura auris congenita 1.01

0706002 0.96 1013001 pigmented nevus 0.98

0706004 0.96 1122001 accessory auricles, hydrocele

of tunica vaginalis

0.96

0712002 0.82 1210001 fissura auris congenita 0.98

0718003 0.82 1318002 pigmented nevus 0.87

0724002 0.96 1605004 fissura auris congenita 0.96

0913001 0.82 1610001 pigmented nevus 1.01

0913002 0.82 1702001 pigmented nevus 0.96

1014001 0.82 1702003 hypospadias 0.98

1030005 1.01 1712003 fissura auris congenita 0.96

2406002 0.98 2003004 locus coeruleus buttock 1.01

1111001 1.01 2018001 locus coeruleus buttock 1.04

1210002 0.98 2222006 aural deformity, accessory auricles 1.01

1605001 0.79 2406003 accessory auricles 1.01

1605002 0.93 2229003 fissura auris congenita 0.96

1610002 0.93 2304001 ectrodactyly (left) 0.98

1703001 1.01 2304003 chin deformity (right) 0.98

1908001 0.87 2318001 fissura auris congenita 0.98

2017001 0.93 2321002 hemangioma 1.01

2022001 0.98 2401002 hydrocele of tunica vaginalis 0.98

2027001 0.96 2228002 hydrocele of tunica vaginalis 1.10

2027002 0.84 0724001 down's syndrome 1.12

2303002 1.01 0706005 pigmented nevus 1.21

2315003 0.87 1041005 fissura auris congenita 1.29

2321001 0.82 1107002 pigmented nevus 1.35

2406001 0.82 0902005 pigmented nevus 1.41

1041001 1.18 2222005 retained testicle 1.43

2402001 1.15 0408004 pigmented nevus (black) 2.53

1713001 1.27 1032001 pigmented nevus (black) 6.38

1023001 1.55 0736002 cleft lip 11.84
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